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Machine Learning on Big Data
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Image Recognition

Deep Residual Network
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Language Model

A multi-layer bidirectional Transformer

Language modeling

Reading comprehension

Machine translation

News article generation

Question answering

Grammar correction
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Distributed Learning

Large-scale learning problems: (big data + big model)

minimize
x∈Rp

f (x) + R(x) =
1

n

n∑
i=1

Eξ∼Di [`i (x, ξ)]︸ ︷︷ ︸
:=fi (x)

+R(x).

Distributed computing for processing massive data and big models
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Parallel SGD
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Figure 1. The first-generation parameter server system  

The model uses a distributed Memcached to store the parameters, where each worker node only 
retains part of the parameters which are required in computing, and they can synchronize global 
model parameters with each other in this model. However, this parameter server is only a prototype 
design, the communication overhead is not optimized, and it is not suitable for distributed machine 
learning. 

Industry has done a lot of work in improving the Parameter Server System. Dean et al. proposed 
a second-generation parameter server system in 2012, and developed a deep learning system called 
DistBelief [12] based on the Parameter Server System. As shown in Figure 2, the system sets up a 
global parameter server. The deep learning model is distributed stored on worker nodes, the 
communication between worker nodes is not allowed, and the PS is responsible for the transfer of all 
parameters. The second-generation parameter server system can solve the problem that the machine 
learning algorithms are very difficult to be distributed, but because it does not consider the 
performance differences of each worker node, the utilization of each worker node in the distributed 
system is still not high. 

 
Figure 2. The second-generation parameter server system  

Li proposed a third-generation parameter server system in 2014 [30,31]. As shown in Figure 3, 
the Parameter Server System provides a more general design, including a parameter server group 
and multiple worker nodes.  
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Parallel SGD coordinated by the parameter server

Time cost per iteration: gradient computation + communication + model update
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Parallel SGD

Communication time = latency + model size
network bandwidth

Image credit: Dan Alistarh

Ideally, communication is fast if model is small and bandwidth is large.
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Parallel SGD

Communication time = latency + model size
network bandwidth

Image credit: Dan Alistarh

Practically, communication is slow if model is large and bandwidth is limited.
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Scalability

Image credit: Dan Alistarh

When the number of nodes increases, the communication becomes even slower.

The speedup becomes worse and we loose the benefit of distributed learning.
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Communication Efficiency

Can we design communication efficient algorithms to overcome the
communication bottleneck for a better speedup and scalability?
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Communication Compression

Compressing the synchronization information into low-bit representations
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Decentralized Communication

Supporting general network topology by neighboring communication
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Decentralization + Compression

Compressing the local communication between connected machines
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Optimization Problem

Optimization problem

minimize
x∈Rp

f(x)+r(x) =
1

n

n∑
i=1

Eξ∼Di [fi (x, ξ)]︸ ︷︷ ︸
:=fi (x)

+r(x).

We mainly focus on the case r(x) = 0 in this section.
The function fi (·, ξ) is differentiable.
Examples: empirical risk minimization in statistical machine learning

Two ways to measure the convergence of an optimization algorithm
How many iterations do we need to achieve some optimality precision ε?
What is the optimality precision ε can we achieve after K iteration?
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Function Properties

Convex: for α ∈ (0, 1)

f (αx + (1− α)y)) ≤ αf (x) + (1− α)f (y)

(µ-strongly) convex and differential: for any y

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖y − x‖2

L-smooth:

f (y) ≤ f (x) + 〈∇f (x), y − x〉+
L

2
‖y − x‖2

Proximal operator:

proxηr (x) = arg min
y

ηr(y) +
1

2
‖y − x‖2
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Centralized Learning

xk+1 = xk − η∇f(xk) = xk − η

n

n∑
i=1

∇fi (xk)
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Communication Compression

Reduce the number of bits in communication

Examples: 1Bit SGD, QSGD, Terngrad, signSGD, ECQ-SGD, DIANA, MEM-SGD,
DoubleSqueeze, DORE, etc.
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Compression Operator: Property

Define Q(x) as the compressed version of x, and it can be encoded with fewer bits

Q(x) can be deterministic or stochastic

Q(x) can be biased (EQ(x) = x) or unbiased (EQ(x) 6= x)

C -contracted operator:
E‖x− Q(x)‖2 ≤ C‖x‖2

C controls the compression error.
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Compression Operator: Example

No compression: C = 0

Top-K sparsification: select top K elements according to the magnitudes (biased,
C < 1)

Rand-K sparsification: randomly select K elements and rescale it (unbiased, C < 1)

p-norm b-bit quantization: (unbiased, C > 0)

Q∞(x) :=
(
‖x‖p2−(b−1)sign(x)

)
·
⌊

2(b−1)|x|
‖x‖p

+ u

⌋
(1)

Example: [1.2,−0.1]⇒ ([1, 0], ‖[1.2,−0.1‖p)
It can also be done separately in each data block to reduce compression
error [Mishchenko et al. ’19].

Others
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Compression Operator: Empirical Comparison

Evaluated on 100 uniformly generated random vectors in R10000 [Liu et al. ’21]

Comparison of compression error
between different compression operators

Comparison of compression error
for p-norm b-bit quantization
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Centralized Learning

Non-compressed version:

xk+1 = xk − η∇f(xk) = xk − η

n

n∑
i=1

∇fi (xk)

Compressed framework:

xk+1 = xk − η∇f(xk) = xk − η

n

n∑
i=1

gk
i ,

where gk
i is an approximation of ∇fi (xk).
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Compression Technique: Direct Compression (Q-SGD)

xk+1 = xk − η

n

n∑
i=1

Q(∇fi (xk))

Assume that all nodes have the true solution x∗. Then one step of parallel (exact)
gradient descent with compression will leave x∗ in general.

That is

x = x∗ − η

n

n∑
i=1

Q(∇fi (x∗))

= x∗ − η

n

n∑
i=1

∇fi (x∗) +
η

n

n∑
i=1

(∇fi (x∗)− Q(∇fi (x∗))).

The only ways to have x = x∗ are that the sum of the compression error is 0 or
η = 0.
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Compression Technique: Error Compensation (EF-SGD)

xk+1 = xk − η

n

n∑
i=1

Q(∇fi (xk) + ek−1
i )

ek
i = ∇fi (xk) + ek−1

i − Q(∇fi (xk) + ek−1
i )

Main idea: add the compression error to the next variable to be compressed
[Seide et al. ’14, Wu et al. ’18, Stich et al. ’18, Karimireddy et al. ’19]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

Q(∇fi (x∗) + ei )

= x∗ − η

n

n∑
i=1

∇fi (x∗)

+
η

n

n∑
i=1

(∇fi (x∗) + ei − Q(∇fi (x∗) + ei ))− η

n

n∑
i=1

ei .

The only ways to have x = x∗ are that the sum of the compression error does not
change or η = 0.
It convergences with a diminishing stepsize also, and it requires the boundedness of
the stochastic gradient.

Distributed Learning IJCAI 2021 26 / 92



Compression Technique: Error Compensation (EF-SGD)

xk+1 = xk − η

n

n∑
i=1

Q(∇fi (xk) + ek−1
i )

ek
i = ∇fi (xk) + ek−1

i − Q(∇fi (xk) + ek−1
i )

Main idea: add the compression error to the next variable to be compressed
[Seide et al. ’14, Wu et al. ’18, Stich et al. ’18, Karimireddy et al. ’19]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

Q(∇fi (x∗) + ei )

= x∗ − η

n

n∑
i=1

∇fi (x∗)

+
η

n

n∑
i=1

(∇fi (x∗) + ei − Q(∇fi (x∗) + ei ))− η

n

n∑
i=1

ei .

The only ways to have x = x∗ are that the sum of the compression error does not
change or η = 0.

It convergences with a diminishing stepsize also, and it requires the boundedness of
the stochastic gradient.

Distributed Learning IJCAI 2021 26 / 92



Compression Technique: Error Compensation (EF-SGD)

xk+1 = xk − η

n

n∑
i=1

Q(∇fi (xk) + ek−1
i )

ek
i = ∇fi (xk) + ek−1

i − Q(∇fi (xk) + ek−1
i )

Main idea: add the compression error to the next variable to be compressed
[Seide et al. ’14, Wu et al. ’18, Stich et al. ’18, Karimireddy et al. ’19]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

Q(∇fi (x∗) + ei )

= x∗ − η

n

n∑
i=1

∇fi (x∗)

+
η

n

n∑
i=1

(∇fi (x∗) + ei − Q(∇fi (x∗) + ei ))− η

n

n∑
i=1

ei .

The only ways to have x = x∗ are that the sum of the compression error does not
change or η = 0.
It convergences with a diminishing stepsize also, and it requires the boundedness of
the stochastic gradient.

Distributed Learning IJCAI 2021 26 / 92



Compression Technique: Difference Compression (DIANA)

xk+1 = xk − η

n

n∑
i=1

hk
i + Q(∇fi (xk)− hk

i )

Main idea: quantize the difference between the gradient and an
estimation [Mishchenko et al. ’19, Liu et al. ’20]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

hi + Q(∇fi (x∗)− hi )

= x∗ − η

n

n∑
i=1

∇fi (x∗) +
η

n

n∑
i=1

(∇fi (x∗)− hi − Q(∇fi (x∗)− hi ))

For a positive η, if we can have hi = ∇fi (x∗), then we have x = x∗.

Question: How to update hi?

hk+1
i = hk

i + αQ(∇fi (xk)− hk
i )
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Comparison of Three Compression Techniques

Direct compression: large variance, works when the variance converges to zero

Error compensation: smaller variance compared to the direct compression, also
works when the variance converges to zero

Difference compression: the variance converges to zero.
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DORE: Double Residual Compression

Input: Stepsize α, β, γ, η, initialize h0 = h0
i = 0d , x̂0

i = x̂0, ∀i ∈ {1, . . . , n}.
for k = 1, 2, · · · ,K − 1 do

For each worker {i = 1, 2, · · · , n}:
Gradient residual: ∆k

i = ∇fi (x̂k
i )− hk

i

Compression: ∆̂k
i = Q(∆k

i )
hk+1
i = hk

i + α∆̂k
i

Sent ∆̂k
i to the master

Receive q̂k from the master
x̂k+1
i = x̂k

i + βq̂k

For the master:

Receive ∆̂k
i s from workers

∆̂k = 1/n
∑n

i ∆̂k
i

ĝk = hk + ∆̂k

hk+1 = hk + α∆̂k{= 1
n

∑n
i=1 hk+1

i }
qk = −ηĝk + γek

Compression: q̂k = Q(qk)
ek+1 = qk − q̂k

Broadcast q̂k to workers

end for
Output: any x̂K

i

The worker nodes compress the residual.

The master node uses error compensation and broadcasts the compressed update
(which converges to 0).
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Algorithm Comparison

Algorithm Compression Compress. Model Linear Nonconvex Rate
SGD No No X 1√

Kn
+ 1

K

QSGD Grad 2-norm N/A 1
K

+ B
MEM-SGD Grad k-contraction N/A N/A

DIANA Grad p-norm X 1√
Kn

+ 1
K

DoubleSqueeze Grad+Model Bdd Variance N/A 1√
Kn

+ 1

K2/3 + 1
K

DORE Grad+Model Assum. 1 X 1√
Kn

+ 1
K

Convergence complexity comparison
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Linear Regression
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f (x) = ‖Ax− b‖2 + λ‖x‖2 with A ∈ R1200×500. The rows of A are allocated evenly
to 20 worker nodes. We take the exact gradient in each node to exclude the effect
of the gradient variance (i.e., σ = 0).
Left: γ = 0.05, Right: γ = 0.025.

Linear convergence: DORE, SGD, DIANA; Not converge: QSGD, MEM-SGD,
DoubleSqueeze (diverges in Left figure), DoubleSqueeze (topk)
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Linear Regression: Data to be Compressed
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The norm of the variable to be compressed in all algorithms.
Left: the worker node; Right: the master node.

The norm of the variable decreases exponentially for DORE, while that of
DoubleSqueeze does not decrease after certain iterations.
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LeNet on MINST
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We use 1 parameter server and 10 worker nodes, each of which is equipped with an
NVIDIA Tesla K80 GPU. The batch size for each worker node is 256. Learning rate
is 0.1 and decreases by a factor of 0.1 after every 25 epochs.
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Resnet18 Trained on CIFAR10
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We use 1 parameter server and 10 worker nodes, each of which is equipped with an
NVIDIA Tesla K80 GPU. The batch size for each worker node is 256. Learning rate
is 0.01 and decreases by a factor of 0.1 after every 100 epochs.
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Stochastic Algorithms

Stochastic gradient descent: replace ∇fi (xk) by a stochastic approximation gk
i . It is

unbiased Egk
i = ∇fi (xk) and has positive variance.

Variance reduction techniques: SVRG, SAGA, SARAH.

Momentum method: momentum SGD, STORM, ROOT-SGD, IGT.

For stochastic gradient without variance reduction, error compensation may be good
enough and the compression error will not converge to zero.

However, for stochastic with momentum, error compensation can not remove
previous errors.
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Momentum SGD

Momentum update

vk = (1− αk)vk−1 + αkgk , xk+1 = xk − ηvk ,

where gk is an estimation of the gradient at xk .

αk gk

SGD 1 ∇fi (xk ; ξk)

Momentum SGD α ∇fi (xk ; ξk)

STORM α 1
αk

(
∇fi (xk ; ξk)− (1− αk)∇fi (xk−1; ξk)

)
ROOT-SGD 1/k 1

αk

(
∇fi (xk ; ξk)− (1− αk)∇fi (xk−1; ξk)

)
IGT α ∇fi

(
xk + 1−αk

αk
(xk − xk−1); ξk

)
Standard error compensation without momentum:

xk+1 = xk − ηQ(gk + ek−1), ek = gk + ek−1 − Q(gk + ek−1).
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Error Accumulation (Let αk = α and v−1 = 0)

No compression:

xT = x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−sgs = x0 − η
T−1∑
t=0

t−1∑
s=0

α(1− α)t−sgs − αη
T−1∑
t=0

gt

Simple compression on g:

xT = x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−s(gs − es)

= x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−sgs + η

T−2∑
s=0

(1− (1− α)T−s)es + ηαeT−1

Error compensation (e−1 = 0):

xT = x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−s(gs + es−1 − es)

= x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−sgs + η

T−2∑
s=0

α(1− α)T−1−ses + ηαeT−1

When α = 1 (no momentum), the error is just ηeT−1. However, α is usually very small if
momentum is applied.
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ErrorCompensatedX: Using the Previous Two Errors

ErrorCompensedX (e−1 = e−2 = 0):

xT = x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−s(gs + (1− α)(es−1 − es−2) + es−1 − es)

= x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−sgs + ηαeT−1

The error does not accumulate!
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Numerical Verification

Convergence speed comparison on linear regression for STORM and IGT with different
compression techniques.

The y -axis is the norm of the full gradient. The batch size equals 1, αk = 1/k, and we
use 1-bit compression.
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Numerical Experiments

Epoch-wise convergence comparison on ResNet-50:
Training loss:
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Test accuracy:
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Decentralized Averaging

Settings:
- A connected network with n agents, denoted as V = {1, 2, · · · , n}.
- Each agent i holds a local number (vector) ci privately.
- Agent i can exchange the number (vector) with agent j if and only if j is the
neighbour of i , denoted as j ∈ Ni .

Objective: Each agent obtains the averaged number (vector) c̄ = 1
n

∑n
i=1 ci .
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Figure: Illustrative figure of the network.
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Decentralized Averaging

Method: linear iterative averaging (gossip algorithm)
Assign each agent i an own model variable xi .
Initialize x0

i = ci .
Update the variable via

xk+1
i = wiix

k
i +

∑
j∈Ni

wijx
k
j

with given set of weights {wij : i , j ∈ V}.
Examples of weight set:

Metropolis weights, i.e., wij = 1
max{|Ni |,|Nj |}+1 if j ∈ Ni , wii = 1−

∑
j∈Ni

wij and wij = 0

otherwise.
Fastest distributed linear averaging in [Xiao-Boyd ’04].
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Decentralized Averaging
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Figure: Star graph, random graph and line graph with 10 agents

Consider the graph structure of the distributed system, G = (V, E) where E is the
set of connection relation among agents in V.

All agents form an undirected connected graph.

Edges characterize the connection among agents.
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Decentralized Averaging

The problem is formulated as the minimization with constraint

minimize
x1,··· ,xn∈Rp

1

2

n∑
i=1

‖xi − ci‖2 s.t. x1 = x2 · · · = xn (2)

The linear iterative averaging is formulated as

Xk+1 = WXk

where X = [x1, x2, · · · , xn]> and W is the matrix with entries in {wij : i , j ∈ V}
By construction, W is symmetric and doubly stochastic, i.e., W1 = 1 and
1>W = 1>.

Let X∞ = c̄1 and Π = 1
n
11> (averaging matrix)

‖Xk+1 − X∞‖2 ≤ λ2
max(W − Π)‖Xk − X∞‖2

Each xki converges to c̄ linearly at the rate of λ2
max(W − Π)︸ ︷︷ ︸

=max{|λ2(W)|,|λn(W)|}

if ‖W − Π‖2 < 1.
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Decentralized Consensus

W – mixing matrix (gossip matrix) defined over the undirected network G:
symmetric and W1 = 1.
‖W − Π‖2 < 1 ⇒ −1 < λn(W) ≤ · · · ≤ λ2(W) < λ1(W) = 1.

Decentralized consensus problem for averaging:

minimize
X∈Rn×p

f(X) :=
1

2

n∑
i=1

‖xi − ci‖2 s.t. (I−W)X = 0.

Consensus: WX = X iff x1 = x2 = · · · = xn.

The general decentralized consensus problem (DCP):

minimize
X∈Rn×p

f(X) :=
n∑

i=1

fi (xi ) s.t. (I−W)X = 0

where fi (xi ) is a differentiable convex function.
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Decentralized Consensus

The general decentralized consensus composite problem (DCCP):

minimize
X∈Rn×p

f(X) + r(X) :=
n∑

i=1

fi (xi ) +
n∑

i=1

ri (xi ) s.t. (I−W)X = 0,

where ri (x) is a convex (possibly) non-smooth regularizer.

Consider the setting:
f is L-smooth and µ-strongly convex, i.e.,

µ

2
‖a− b‖2 ≤ fi (a)− fi (b)− 〈∇fi (b), a− b〉 ≤

L

2
‖a− b‖2, ∀a, b ∈ Rp .

ri (x) = rj (x) for i , j ∈ V (shared regularizer)
The proximal gradient mapping,

proxηri (x) = arg min
y∈Rp

ri (y) +
1

2η
‖y − x‖2.
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Decentralized Gradient Descent

Decentralized Gradient Descent (DGD) in [Nedic-Ozdaglar ’09]
aims to solve DCP.
combine mixing step (communication procedure) with gradient descent.

Xk+1 = WXk−η∇f(Xk)

In agent i ’s perspective,xk+1
i = wiix

k
i +

∑
j∈Ni

wijx
k
j︸ ︷︷ ︸

mixing step

− η∇fi (xk
i )︸ ︷︷ ︸

gradient descent


Taking fixed stepsize η ∈ (0,min{ 1+λn(W)

L
, 1
L+µ
}] in [Yuan et al. ’16],

‖Xk − X∗‖ ≤ O(ρk) +O(η).

“Near” convergence: linear rate to the neighbourhood of x∗.
Diminishing stepsize for exact convergence.
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Decentralized Gradient Descent

One explanatory view:
Reformulate the iteration of DGD as

Xk+1 = Xk− [(I−W)Xk + η∇f(Xk )]︸ ︷︷ ︸
gradient descent

Gradient descent with stepsize 1 for the different problem

minimize
X∈Rp×d

1

2
‖
√

I−WX‖2 + ηf(X)

The solution X† to this problem is generally non-consensus, i.e.,

WX† = X† + η∇f(X†) 6= X†.

η → 0, i.e., decreasing η in iterations, guarantees the consensus.
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Decentralized Gradient Descent

Another explanatory view:
Recall DGD:

Xk+1 = WXk − η∇f(Xk )

The limit point X∞ :
(I−W)X∞ = −η∇f(X∞)

The consensus of X∞ ⇔ ∇f(X∞) = 0.
In general, ∇f(X∗) 6= 0. Instead,

1

n
1>∇f(X∗) =

1

n

n∑
i=1

∇fi (x∗i ) = 0

If we replace ∇f(Xk) by Yk and Yk → 0,

(I−W)X∞ = −ηY∞ = 0,

we can achieve the consensus.
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Gradient Tracking Method

One form of tracking method to tackle DCP

Aug-DGM:

⌊
Xk+1 = WXk − ηYk

Yk+1 = WYk +∇f(Xk+1)−∇f(Xk)

Y is the tracking variable.
Y preserve the gradient average

Y0 = ∇f(X0) ⇒
1

n
1>Yk =

1

n
1>∇f(Xk )

The limit point of Y satisfies

(I−W)Y∞ = 0

Y∞ =
1

n
11>∇f(X∞)

X∞ reaches the consensus ⇔ Y∞ = 0 ⇔ X∞ is solution.

More forms of gradient tracking can be found in Aug-DGM [Xu et al. ’15],
Next [Di Lorenzo-Scutari ’16],DIGing[Qu-Li ’17, Nedic et al. ’17] and
SONATA [Scutari-Sun ’19].
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Gradient Tracking Method

The exact convergence with fixed stepsize

η ∈

0,
(1−max{|λ2(W)|, |λn(W)|})2

(1 +
√

L
µ

+ 3)L


Xk converges to X∗ linearly.

Extension: Push-Pull algorithm over directed network [Pu et al. ’20].

Drawback: one more communication per iteration.

Question:

1. Linear convergent algorithm with better communication rounds?
2. Algorithm with larger stepsize?
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EXTRA/NIDS

EXTRA proposed in [Shi et al. ’15] uses one more historical variable to reach
consensus.

Consider two consecutive iterations of DGD with different mixing matrices Xk+2 = WXk+1 − η∇f(Xk+1)

Xk+1 =
I + W

2
Xk − η∇f(Xk)

Combine two iterations,

Xk+2 − Xk+1 = WXk+1 − I + W

2
Xk − η∇f(Xk+1) + η∇f(Xk)

⇓

EXTRA: Xk+2 =
I + W

2
(2Xk+1 − Xk)− η∇f(Xk+1) + η∇f(Xk)
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EXTRA/NIDS

Consensus,

X∞ =
I + W

2
X∞ − η∇f(X∞) + η∇f(X∞) ⇒ (I−W)X∞ = 0.

Optimality, taking telescopic sum,

��X
1 = WX0 −����η∇f(X0)

X2 −��X
1 = WX1 − I + W

2
X0 −����η∇f(X1) + ����η∇f(X0)

...

Xk+1 −��Xk = WXk − I + W

2
Xk−1 − η∇f(Xk) + �����

η∇f(Xk−1)

⇓

Xk+1 = WXk − η∇f(Xk)︸ ︷︷ ︸
DGD

−
k−1∑
t=0

I−W

2
Xt

︸ ︷︷ ︸
correction
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EXTRA/NIDS

The consensus of X∞ implies the optimality

��X∞ = ���WX∞ − η∇f(X∞)−
∞∑
t=0

I−W

2
Xt .

⇓

η1>∇f(X∞) = η

n∑
i=1

∇fi (x∞i ) = −1>
∞∑
t=0

I−W

2
Xt = 0.

The exact linear convergence with fixed stepsize

η ∈
(

0,
1 + λn(W)

L

)
.

Extension: larger stepsize over relaxed mixing matrix [Li-Yan ’21], i.e.,

−5

3
< λn(W) ≤ · · · ≤ λ2(W) < λ1(W) = 1,

the linear convergence is preserved when λn(W) ≤ −1

η ∈
(

0,
5 + 3λn(W)

4L

)
.
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EXTRA/NIDS

NIDS is proposed in [Li et al. ’19].

NIDS: Xk+2 =
I + W

2
[2Xk+1 − Xk−η∇f(Xk+1) + η∇f(Xk)]

EXTRA: Xk+2 =
I + W

2
(2Xk+1 − Xk)−η∇f(Xk+1) + η∇f(Xk)

The only difference is the communication of gradient, but NIDS converges linearly
with

η ∈
(

0,
2

L

)
.

The stepsize is independent on the network.

The stepsize is consistent with that in gradient descent

Extension: NIDS also preserves linear convergence over relaxed mixing matrix with
the same stepsize.
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EXTRA/NIDS

Compared to gradient tracking methods, EXTRA/NIDS converges faster due to the
larger stepsize.

EXTRA/NIDS communicates only once per iteration.

EXTRA/NIDS has proximal variant to solve DCCP (DCP+regularizer).

PG-EXTRA:

Yk+2 = WXk+1 + Yk+1 − I + W

2
Xk−η∇f(Xk+1) + η∇f(Xk)

Xk+2 = proxηr(Yk+2)

NIDS:

Yk+2 = WXk+1 + Yk+1 − I + W

2

[
Xk+η∇f(Xk+1)− η∇f(Xk)

]
Xk+2 = proxηr(Yk+2)

Drawback: it is difficult to adapt and analyze EXTRA/NIDS for directed network.
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A Numerical Example
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Figure: LEFT: the error ‖xk−x∗‖F
‖x0−x∗‖F

vs iterations for DGD with different stepsizes, EXTRA with

three stepsizes, and NIDS. RIGHT: The random network with 10 nodes. Figure from [Li-Yan ’21]
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Other Algorithms

Dual Averaging – [Duchi et al. ’11]

Augmented Lagrangian Method – [Gharesifard-Cortés ’13]

Fast Distributed Gradient Method – [Jakovetić et al. ’14]

D-ADMM – [Shi et al. ’14]

DLM – [Ling et al. ’15]

Stochastic Gradient Push – [Nedić-Olshevsky ’16]

SDCS – [Lan et al. ’20]

For more algorithms, refer to survey [Nedić et al. ’18]
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A Unified Decentralized Framework: PUDA

PUDA proposed in [Alghunaim et al. ’20] to solve DCCP (DCP + non-smooth
regularizer)

PUDA:


Zk+1 = (I− C)Xk − η∇f(Xk)− BYk

Yk+1 = Yk + BZk+1

Xk+1 = proxηr(AZk+1)

A,B,C are symmetric matrices dependent on mixing matrix W.

When r = 0, i.e., no regularizer, the framework covers many algorithms.

Aug-DGM: A = W2, B = I−W and C = 0.
DIGing: A = I,B = I−W and C = I−W2.

EXTRA: A = I,B = I−W
2

and C = I−W
2

.

NIDS: A = I+W
2
,B = I−W

2
and C = 0.

PUDA provides (new) proximal variants for these algorithms.
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A Unified Decentralized Framework: PUDA

Assumptions on A,B and C:
(1) BX = 0 ⇔ x1 = x2 = · · · = xn.
(2) C = 0 or CX = 0 ⇔ BX = 0.

(3) A2 ≤ I− B2 and 0 ≤ C < 2I.

Global linear convergence

Theorem (Linear rate with fixed stepsize)

Let η < 2−λ1(C)
L

, it holds that

‖Xk − X∗‖2 + ‖Yk − Y∗‖2 ≤ γ(‖Xk−1 − X∗‖2 + ‖Yk−1 − Y∗‖2),

where
γ = max{1− ηµ(2− λ1(C)− ηL), 1− λmin(B2)} < 1.
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A Numerical Example

Logistic regression with `2 + `1 regularizer.

fi (xi ) =
1

L

L∑
l=1

ln(1 + exp(−yi,lw>i,lxi )) +
λ

2
‖xi‖2, ri (xi ) = ρ‖xi‖1

Figure: Simulation results for three datasets. Prox-ED is a new proximal variant of NIDS.
Prox-ATC I and II are proximal variants of gradient tracking methods. Figure
from [Alghunaim et al. ’20]
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Decentralized Learning with Compression

Selected algorithms

DGD-type algorithms:
DCD-SGD [Tang et al. ’18]
Choco-SGD [Koloskova et al. ’19]

Primal-dual algorithms:
LEAD [Liu et al. ’21]
LessBit [Kovalev et al. ’21]
Prox-LEAD [Li et al. ’21]

Gradient-tracking algorithms:
C-GT [Liao et al. ’21]
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DCD-PSGD: Difference Compression

P-DSGD [Lian et al. ’17]: no compression

Xk+1 = WXk − η∇F(Xk ; ξk)

DCD-PSGD [Tang et al. ’18]: difference compression

Xk+ 1
2 = WXk − η∇F(Xk ; ξk)[

WXk= WXk−1 + WQ(Xk−1+ 1
2 − Xk−1)

]
Xk+1 = Xk + Q(Xk+ 1

2 − Xk)

Convergence: for non-convex and smooth problems: O( 1√
nK

).

Drawbacks: 1) requires compression with high precision; 2) convergence bias.
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DCD-PSGD: Experiment
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Choco-Gossip: Average Preserving

Gossip (no compression)
Decentralized Average (Gossip):

Xk+1 = WXk = Xk − (I−W)Xk

A relaxed form:
Xk+1 = Xk − γ(I−W)Xk

Convergence to consensus: ‖Xk − X∗‖2
F ≤ (1− γδ)2k‖X0 − X∗‖2

F where
δ = 1− |λ2(W)|.

Quantized gossip (with compression)
Choco-gossip [Koloskova et al. ’19]: difference compression

X̂k+1 = X̂k + Q(Xk − X̂k )

Xk+1 = Xk+1 − γ(I−W)X̂k+1[
WX̂k+1= WX̂k + WQ(Xk − X̂k )

]
Average preseving:

1

n

∑
i

Xk+1
i =

1

n

∑
i

Xk
i = X∗

Convergence: EEk ≤
(
1−O(δ2(1− C))

)kEE0 with a special stepsize γ, when Q is a

C -contracted compression operator. Ek = ‖Xk − X∗‖2
F + ‖Xk − X̂t+1‖2

F
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Choco-Gossip: Experiment

Average consensus on the ring topology
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Choco-SGD

P-DSGD (a slight different form): no compression

Xk+1 = W(Xk − γ∇F(Xk ; ξk))

Choco-SGD [Koloskova et al. ’19]: with compression

Xk+ 1
2 = Xk − ηk∇F(Xk ; ξk)

X̂k+1 = X̂k+1 + Q(Xk+ 1
2 − X̂k)

Xk+1 = Xk+ 1
2 − γ(I−W)X̂k+1[

WX̂k+1= WX̂k + WQ(Xk − X̂k)
]

Convergence: for smooth and µ-strongly convex problems, when K is sufficiently

large: Ef (xK
avg)− f ∗ = O( σ2

µnK
).

Drawbacks: 1) hard to tune γ and ηk ; 2) slow convergence; 3) convergence bias
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Choco-SGD: Experiment

Convergence to the optimality on a ring topology
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Compression for Primal-Dual Algorithms

Communication Compression for decentralized optimization
DCD-SGD, ECE-SGD [Tang et al. ’18]
QDGD [Reisizadeh et al. ’19a]
QuanTimed-DSGD [Reisizadeh et al. ’19b]
DeepSqueeze [Tang et al. ’19]
CHOCO-SGD [Koloskova et al. ’19]
. . .

Reduce to DGD-type algorithms, which suffer from convergence bias

X∗ 6= WX∗ − η∇F(X∗).

The performance degrade on heterogeneous data, and they converge slowly.

Since primal-dual algorithms are effective in handling the convergence bias, can we
design primal-dual algorithms with compression?
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LEAD

LEAD [Liu et al. ’21] is the first primal-dual decentralized algorithm with
compression that attains linear convergence.

Decentralized consensus problem (DCP)

X∗ = arg min
X∈Rn×p

n∑
i=1

fi (xi )︸ ︷︷ ︸
=:F(X)

, s.t. (I−W)X = 0, (3)

Consider the equivalent min-max problem

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈B
1
2 X,S〉, (4)

where B = I−W
2

.
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LEAD

Consider the equivalent min-max problem

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈B
1
2 X,S〉, (5)

We apply primal-dual hybrid gradient method (PDHG) in [Zhu-Chan ’08]:
PDHG :

Xk+1 = arg min
X∈Rn×p

F(X) + 〈B
1
2 X,Sk〉,

Sk+1 = Sk + λB
1
2 Xk+1.

We solve X-subproblem inexactly by two-step gradient descent with stepsize η:
inexact PDHG :

Xk+1 = Xk − η∇F(Xk)− ηB
1
2 Sk ,

Yk+1 = Xk+1 − η∇F(Xk+1)− ηB
1
2 Sk ,

Sk+1 = Sk + λB
1
2 Yk+1.
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LEAD

To share the computation of ∇F(Xk) between iterations, we switch the order and let

D = B
1
2 S: 

inexact PDHG :

Yk+1 = Xk − η∇F(Xk)− ηDk ,

Dk+1 = Dk +
λ

2
(I−W)Yk+1,

Xk+1 = Xk − η∇F(Xk)− ηDk+1.

(6)

There is only one time communication in D step.

We propose a new compression procedure for communication over decentralized
networks.
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LEAD

LEAD: set λ = γ
η

Yk = Xk − η∇F(Xk ; ξk)− ηDk

Ŷk = CompressionProcedure(Yk)

Dk+1 = Dk +
γ

2η
(I−W)Ŷk = Dk +

γ

2η
(Ŷk − Ŷk

w )

Xk+1 = Xk − η∇F(Xk ; ξk)− ηDk+1

Compression procedure

Qk = Compress(Yk −Hk) B Compression

Ŷk= Hk + Qk

Ŷk
w= Hk

w + WQk B Communication

Hk+1 = (1− α)Hk + αŶk

Hk+1
w = (1− α)Hk

w + αŶk
w
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LEAD

How LEAD works?

Gradient Correction

Xk+1 = Xk − η(∇F(Xk ; ξk) + Dk+1)

F(Xk ; ξk) + Dk+1 → 0

Difference Compression
Qk = Compress(Yk −Hk)

Yk → X∗,Hk → X∗ ⇒ Yk −Hk → 0⇒ ‖Qk − (Yk −Hk)‖ → 0

Implicit Error Compensation
Ek = Ŷk − Yk

Dk+1 = Dk +
γ

2η
(Ŷk − Ŷk

w ) = Dk +
γ

2η
(I−W)Yk +

γ

2η
(Ek −WEk)

A global average view
Xk+1 = Xk − η∇F(Xk ; ξk)

Xk → Xk

Advantages: 1) faster convergence; 2) support heterogeneous data well; 2) easy to
tune stepsizes η, α and γ (simply setting α = 0.5 and γ = 1 works well).
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LEAD: Convergence

κf =
L

µ
, κg =

λmax(I−W)

λ+
min(I−W)

Complexity bounds when σ = 0
LEAD converges to the ε-accurate solution with the iteration complexity

O
((

(1 + C)(κf + κg ) + Cκf κg
)

log
1

ε

)
.

When C = 0 (i.e., no compression) or C ≤ κf +κg

κf κg +κf +κg
, the iteration complexity is

O
(

(κf + κg ) log
1

ε

)
.

This recovers the convergence rate of NIDS [Li et al. ’19].

With C = 0 (or C ≤ κf +κg

κf κg +κf +κg
) and fully connected communication graph (i.e.,

W = 11>

n
), the iteration complexity is

O(κf log
1

ε
).

This recovers the convergence rate of gradient descent [Nesterov ’13].

Complexity bounds when σ > 0
Sublinear rate

1

n

n∑
i=1

E
∥∥∥xki − x∗

∥∥∥2
. O

(
1

k

)
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LEAD: Experiment
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LEAD: Experiment
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LessBit

Consider the equivalent min-max problem

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈(I−W)
1
2 X,S〉, (7)

Apply one step primal descent and one step dual ascent:⌊
Xk+1 = Xk − η∇F(Xk)− ηDk ,

Dk+1 = Dk + θ(I−W)Xk+1,

where Dk = (I−W)
1
2 Sk . It is a special case of PDGM [Alghunaim-Sayed ’20].

LessBit [Kovalev et al. ’21] proposes a similar compression procedure as in
LEAD [Liu et al. ’21] and apply the compression on Xk+1:

Xk+1 = Xk − η∇F(Xk)− ηDk ,

X̂k+1 = CompressionProcedure(Xk+1)

Dk+1 = Dk + θ(I−W)X̂k+1

It considers several gradient estimators: Dual gradient/GD/SGD/Loopless SVRG.

Convergence complexity (full-gradient): O((C + κf κg + Cκf κ̃g ) log 1
ε
)
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Prox-LEAD

Prox-LEAD proposed in [Li et al. ’21] considers the decentralized consensus
composite problem with regularizer:

X∗ = arg min
X∈Rn×p

n∑
i=1

fi (xi )︸ ︷︷ ︸
=:F(X)

+
n∑

i=1

r(xi )︸ ︷︷ ︸
=:R(X)

, s.t. (I−W)
1
2 X = 0, (8)

The equivalent min-max problem:

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈(I−W)
1
2 X,S〉+ R(X). (9)

We adapt the inexact PDHG with an additional proximal gradient step:

Yk+1 = Xk − η∇F(Xk)− ηDk ,

Dk+1 = Dk +
λ

2
(I−W)Yk+1,

Vk+1 = Xk − η∇F(Xk)− ηDk+1 =
(

I− ηλ

2
(I−W)

)
Yk+1,

Xk+1 = proxηR(Vk+1).

(10)

where

proxηR(X) = arg min
Y∈Rn×p

R(Y) +
1

2η
‖Y − X‖2.
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Prox-LEAD

We apply the compression procedure on Yk+1:

Yk+1 = Xk − η∇F(Xk)− ηDk ,

Ŷk+1 = CompressionProcedure(Yk+1),

Dk+1 = Dk +
λ

2
(I−W)Ŷk+1,

Vk+1 =
(

I− ηλ

2
(I−W)

)
Ŷk+1,

Xk+1 = proxηR(Vk+1).

(11)
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Prox-LEAD

Complexity with full-gradient:

O
((

(1 + C)(κf + κg ) +
√
C(1 + C)κf κg

)
log

1

ε

)
.

Convergence complexity comparison
(Õ hides the factor log 1

ε
)
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Prox-LEAD

Complexity with stochastic-gradient:
The general stochastic setting:

fi (xi ) = Eξi∼Di
fi (xi , ξi ).

The finite-sum setting:

fi (xi ) =
1

m

m∑
j=1

fij (xi ).

Stochastic gradient oracle (SGO)
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Prox-LEAD

Summary of the convergence complexities for Prox-LEAD
(Õ hides the factor log 1

ε
)
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Prox-LEAD: Experiment

0 500 1000 1500 2000 2500 3000 3500 4000
epoch

10−2

10−1

tra
in

in
g 

su
bo

pt
im

al
ity

DGD (32bit)
NIDS (32bit)
Choco (2bit)
LessBit (2bit)
LEAD (32bit)
LEAD (2bit)

0 2 4 6 8
bits 1e7

10−2

10−1

tra
in

in
g 

su
bo

pt
im

al
ity

`2 regularizer with full gradient

0 500 1000 1500 2000 2500 3000 3500 4000
epoch

10−2

10−1

tra
in

in
g 

su
bo

pt
im

al
ity

P2D2 (32bit)
NIDS (32bit)
Prox-LEAD (32bit)
Prox-LEAD (2bit)

0 2 4 6 8
bits 1e7

10−2

10−1

tra
in

in
g 

su
bo

pt
im

al
ity

`2 + `1 regularizer with full gradient

Distributed Learning IJCAI 2021 87 / 92



Prox-LEAD: Experiment
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Gradient Tracking with Compression

Gradient tracking (Aug-DGM) [Xu et al. ’15]:

Xk+1 = WXk − ηYk

Yk+1 = WYk +∇F(Xk+1)−∇F(Xk)

A relaxed form:

Xk+1 = Xk − γ(I−W)Xk − ηYk

Yk+1 = Yk − γ(I−W)Yk +∇F(Xk+1)−∇F(Xk)

A compressed gradient tracking algorithm (C-GT) [Liao et al. ’21]:

X̂k = CompressionProcedure(Xk)

Ŷk = CompressionProcedure(Yk)

Xk+1 = Xk − γ(I−W)X̂k − ηYk

Yk+1 = Yk − γ(I−W)Ŷk +∇F(Xk+1)−∇F(Xk)

Drawbacks: 1) linear convergence rate is worse than LEAD; 2) it requires double
communication cost

Advantage: it is easier to extend to more general network assumption, such as
directed networks (Compressed Push-Pull (CPP) [Song et al. ’21]) and dynamic
networks.
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Ŷk = CompressionProcedure(Yk)

Xk+1 = Xk − γ(I−W)X̂k − ηYk

Yk+1 = Yk − γ(I−W)Ŷk +∇F(Xk+1)−∇F(Xk)
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Conclusion

Summary
Covered by this talk:

Communication bottleneck in distributed machine learning
Compression operators for communication compression
Improved techniques: difference compression & error compensation
Centralized algorithms with compression
Decentralized algorithms
Decentralized algorithms with compression

Not covered:
Asynchronized algorithms
Periodic update in local SGD
Device sampling in federated learning

Future Direction
Theoretical analysis under weaker assumptions
Acceleration
Asynchronization
Device sampling
Periodic communication
Directed and dynamic networks
Compressed counterparts
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