Communication Efficient Distributed Learning An half-day tutorial held in IJCAI 2021

Xiaorui Liu¹, Yao Li^{2,3}, Ming Yan^{3,2}, and Jiliang Tang¹

Website: https://lxiaorui.github.io/distopt/

 Department of Computer Science and Engineering
 ² Department of Mathematics
 ³ Department of Computational Mathematics, Science and Engineering Michigan State University

IJCAI Montreal, Aug. 20th, 2021

Distributed Learning

IJCAI 2021 1/

MICHIGAN STATE

イロト イボト イヨト イヨ

Outline

Introduction

2 Centralized Learning and Communication Compression

- Compression Operators
- Centralized Learning with Compression

3 Decentralized Optimization

- Decentralization
- Consensus Problem
- Decentralized Algorithms
- A Unified Framework for Decentralized Problem

Decentralized Learning with Compression

- DGD-type Algorithms with Compression
- Primal-Dual Algorithms with Compression
- Gradient-Tracking Algorithms with Compression

Summary and Future Direction

< ロ ト < 同 ト < 三 ト < 三

Table of Contents

Introduction

2 Centralized Learning and Communication Compression

- Compression Operators
- Centralized Learning with Compression

3 Decentralized Optimization

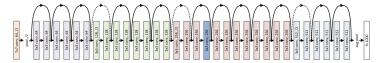
- Decentralization
- Consensus Problem
- Decentralized Algorithms
- A Unified Framework for Decentralized Problem

4 Decentralized Learning with Compression

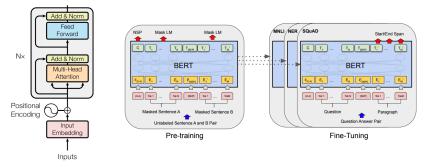
- DGD-type Algorithms with Compression
- Primal-Dual Algorithms with Compression
- Gradient-Tracking Algorithms with Compression

5 Summary and Future Direction

イロト イロト イヨト イヨ



Deep Residual Network



A multi-layer bidirectional Transformer

- Language modeling
- Reading comprehension
- Machine translation

News article generation

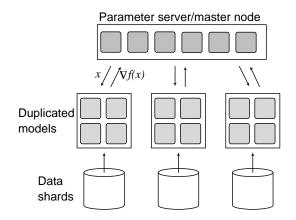
- Question answering
- Grammar correction

Distributed Learning

Large-scale learning problems: (big data + big model)

$$\underset{\mathbf{x}\in\mathbb{R}^{p}}{\text{minimize}} f(\mathbf{x}) + R(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{E}_{\xi\sim\mathcal{D}_{i}}[\ell_{i}(\mathbf{x},\xi)]}_{:=f_{i}(\mathbf{x})} + R(\mathbf{x}).$$

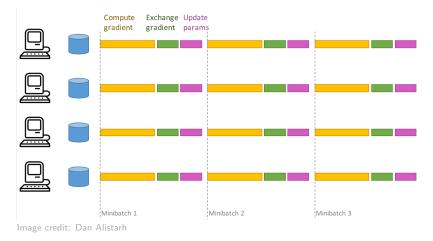
Distributed computing for processing massive data and big models



Parallel SGD coordinated by the parameter server

Time cost per iteration: gradient computation + communication + model update

Communication time = latency + $\frac{\text{model size}}{\text{network bandwidth}}$



Ideally, communication is fast if model is small and bandwidth is large.

Distributed Learning

Communication time = latency + $\frac{\text{model size}}{\text{network bandwidth}}$

Image credit: Dan Alistarh

Practically, communication is slow if model is large and bandwidth is limited.

Scalability

Time to Train Model

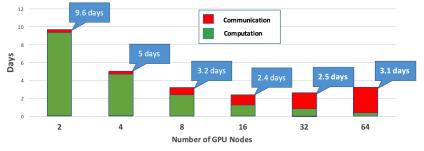
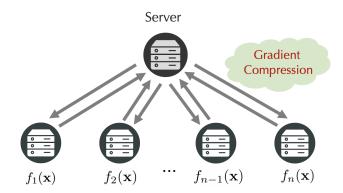


Image credit: Dan Alistarh

- When the number of nodes increases, the communication becomes even slower.
- The speedup becomes worse and we loose the benefit of distributed learning.

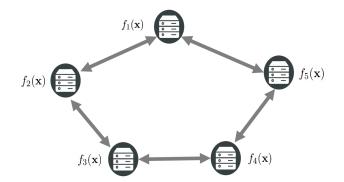
Can we design **communication efficient algorithms** to overcome the **communication bottleneck** for a better speedup and scalability?



Compressing the synchronization information into low-bit representations

・ロト ・日 ・ ・ ヨ ・ ・

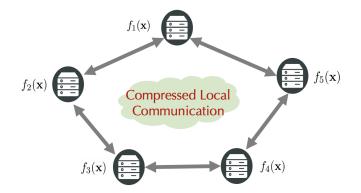
Decentralized Communication



Supporting general network topology by neighboring communication

イロト イロト イヨト イヨ

Decentralization + Compression



Compressing the local communication between connected machines

イロト イロト イヨト イヨ

Introduction

2 Centralized Learning and Communication Compression

- Compression Operators
- Centralized Learning with Compression

3 Decentralized Optimization

- Decentralization
- Consensus Problem
- Decentralized Algorithms
- A Unified Framework for Decentralized Problem

4 Decentralized Learning with Compression

- DGD-type Algorithms with Compression
- Primal-Dual Algorithms with Compression
- Gradient-Tracking Algorithms with Compression

Summary and Future Direction

イロト イボト イヨト イヨ

• Optimization problem

$$\underset{\mathbf{x}\in\mathbb{R}^{p}}{\text{minimize}} \mathbf{f}(\mathbf{x})+\mathbf{r}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{E}_{\xi\sim\mathcal{D}_{i}}[f_{i}(\mathbf{x},\xi)]}_{:=f_{i}(\mathbf{x})} + \mathbf{r}(\mathbf{x}).$$

We mainly focus on the case $\mathbf{r}(\mathbf{x}) = 0$ in this section. The function $f_i(\cdot, \xi)$ is differentiable.

Examples: empirical risk minimization in statistical machine learning

- Two ways to measure the convergence of an optimization algorithm
 - How many iterations do we need to achieve some optimality precision ϵ ?
 - What is the optimality precision ϵ can we achieve after K iteration?

イロト イボト イヨト イヨト

• Convex: for $\alpha \in (0,1)$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

• (μ -strongly) convex and differential: for any **y**

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle
abla f(\mathbf{x}), \mathbf{y} - \mathbf{x}
angle + rac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• L-smooth:

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \langle
abla f(\mathbf{x}), \mathbf{y} - \mathbf{x}
angle + rac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

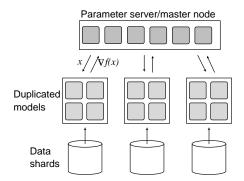
• Proximal operator:

$$\operatorname{prox}_{\eta r}(\mathbf{x}) = \arg\min_{\mathbf{y}} \eta r(\mathbf{y}) + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|^{2}$$

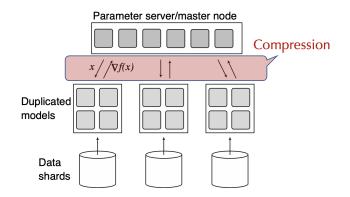
イロト イヨト イヨト イヨト

Centralized Learning

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \eta \nabla \mathbf{f}(\mathbf{x}^k) = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^k)$$



- Data is partitioned at different nodes.
- Each worker node sends the gradient to the master node.
- The master node updates the model x and sends to the worker nodes.



- Reduce the number of bits in communication
- Examples: 1Bit SGD, QSGD, Terngrad, signSGD, ECQ-SGD, DIANA, MEM-SGD, DoubleSqueeze, DORE, etc.

イロト イロト イヨト イヨト

- Define $Q(\mathbf{x})$ as the compressed version of \mathbf{x} , and it can be encoded with fewer bits
- $Q(\mathbf{x})$ can be deterministic or stochastic
- $Q(\mathbf{x})$ can be biased $(\mathbb{E}Q(\mathbf{x}) = \mathbf{x})$ or unbiased $(\mathbb{E}Q(\mathbf{x}) \neq \mathbf{x})$
- C-contracted operator:

$$\mathbb{E}\|\mathbf{x} - Q(\mathbf{x})\|^2 \leq C\|\mathbf{x}\|^2$$

C controls the compression error.

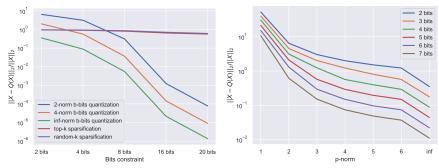
イロト イボト イヨト イヨト

- No compression: C = 0
- $\bullet\,$ Top-K sparsification: select top K elements according to the magnitudes (biased, C<1)
- Rand-K sparsification: randomly select K elements and rescale it (unbiased, C < 1)
- *p*-norm *b*-bit quantization: (unbiased, C > 0)

$$Q_{\infty}(\mathbf{x}) := \left(\|\mathbf{x}\|_{\rho} 2^{-(b-1)} \operatorname{sign}(\mathbf{x}) \right) \cdot \left\lfloor \frac{2^{(b-1)} |\mathbf{x}|}{\|\mathbf{x}\|_{\rho}} + \mathbf{u} \right\rfloor$$
(1)

Example: $[1.2, -0.1] \Rightarrow ([1,0], ||[1.2, -0.1]|_p)$ It can also be done separately in each data block to reduce compression error [Mishchenko et al. '19].

Others



• Evaluated on 100 uniformly generated random vectors in \mathbb{R}^{10000} [Liu et al. '21]

Comparison of compression error between different compression operators

Comparison of compression error for *p*-norm *b*-bit quantization

イロト イヨト イヨト イ

• Non-compressed version:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \eta \nabla \mathbf{f}(\mathbf{x}^k) = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^k)$$

• Compressed framework:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \eta \nabla \mathbf{f}(\mathbf{x}^k) = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n \mathbf{g}_i^k,$$

where \mathbf{g}_i^k is an approximation of $\nabla f_i(\mathbf{x}^k)$.

イロト イロト イヨト イヨト

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n \mathbf{Q}(\nabla f_i(\mathbf{x}^k))$$

• Assume that all nodes have the true solution x^{*}. Then one step of parallel (exact) gradient descent with compression will leave x^{*} in general.

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n \mathbf{Q}(\nabla f_i(\mathbf{x}^k))$$

- Assume that all nodes have the true solution x^* . Then one step of parallel (exact) gradient descent with compression will leave x^* in general.
- That is

$$\mathbf{x} = \mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n Q(\nabla f_i(\mathbf{x}^*))$$

= $\mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^*) + \frac{\eta}{n} \sum_{i=1}^n (\nabla f_i(\mathbf{x}^*) - Q(\nabla f_i(\mathbf{x}^*))).$

The only ways to have $\mathbf{x} = \mathbf{x}^*$ are that the sum of the compression error is $\mathbf{0}$ or $\eta = \mathbf{0}$.

イロト イロト イヨト イヨト

$$\begin{aligned} \mathbf{x}^{k+1} &= \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n Q(\nabla f_i(\mathbf{x}^k) + \mathbf{e}_i^{k-1}) \\ \mathbf{e}_i^k &= \nabla f_i(\mathbf{x}^k) + \mathbf{e}_i^{k-1} - Q(\nabla f_i(\mathbf{x}^k) + \mathbf{e}_i^{k-1}) \end{aligned}$$

 Main idea: add the compression error to the next variable to be compressed [Seide et al. '14, Wu et al. '18, Stich et al. '18, Karimireddy et al. '19]

イロト イロト イヨト イヨ

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n Q(\nabla f_i(\mathbf{x}^k) + \mathbf{e}_i^{k-1})$$
$$\mathbf{e}_i^k = \nabla f_i(\mathbf{x}^k) + \mathbf{e}_i^{k-1} - Q(\nabla f_i(\mathbf{x}^k) + \mathbf{e}_i^{k-1})$$

- Main idea: add the compression error to the next variable to be compressed [Seide et al. '14, Wu et al. '18, Stich et al. '18, Karimireddy et al. '19]
- \bullet Assume that all nodes have the true solution $x^{\ast}.$ In general, we have.

$$\mathbf{x} = \mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n Q(\nabla f_i(\mathbf{x}^*) + \mathbf{e}_i)$$

= $\mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^*)$
+ $\frac{\eta}{n} \sum_{i=1}^n (\nabla f_i(\mathbf{x}^*) + \mathbf{e}_i - Q(\nabla f_i(\mathbf{x}^*) + \mathbf{e}_i)) - \frac{\eta}{n} \sum_{i=1}^n \mathbf{e}_i.$

The only ways to have $\mathbf{x} = \mathbf{x}^*$ are that the sum of the compression error does not change or $\eta = 0$.

イロト イボト イヨト イヨト

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n Q(\nabla f_i(\mathbf{x}^k) + \mathbf{e}_i^{k-1})$$
$$\mathbf{e}_i^k = \nabla f_i(\mathbf{x}^k) + \mathbf{e}_i^{k-1} - Q(\nabla f_i(\mathbf{x}^k) + \mathbf{e}_i^{k-1})$$

- Main idea: add the compression error to the next variable to be compressed [Seide et al. '14, Wu et al. '18, Stich et al. '18, Karimireddy et al. '19]
- \bullet Assume that all nodes have the true solution $\mathbf{x}^*.$ In general, we have.

$$\begin{aligned} \mathbf{x} &= \mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n Q(\nabla f_i(\mathbf{x}^*) + \mathbf{e}_i) \\ &= \mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^*) \\ &+ \frac{\eta}{n} \sum_{i=1}^n (\nabla f_i(\mathbf{x}^*) + \mathbf{e}_i - Q(\nabla f_i(\mathbf{x}^*) + \mathbf{e}_i)) - \frac{\eta}{n} \sum_{i=1}^n \mathbf{e}_i. \end{aligned}$$

The only ways to have $\mathbf{x} = \mathbf{x}^*$ are that the sum of the compression error does not change or $\eta = 0$.

 It convergences with a diminishing stepsize also, and it requires the boundedness of the stochastic gradient.

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n \mathbf{h}_i^k + Q(\nabla f_i(\mathbf{x}^k) - \mathbf{h}_i^k)$$

• Main idea: quantize the difference between the gradient and an estimation [Mishchenko et al. '19, Liu et al. '20]

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n \mathbf{h}_i^k + Q(\nabla f_i(\mathbf{x}^k) - \mathbf{h}_i^k)$$

- Main idea: quantize the difference between the gradient and an estimation [Mishchenko et al. '19, Liu et al. '20]
- Assume that all nodes have the true solution \mathbf{x}^* . In general, we have.

$$\mathbf{x} = \mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n \mathbf{h}_i + Q(\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i)$$

= $\mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^*) + \frac{\eta}{n} \sum_{i=1}^n (\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i - Q(\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i))$

イロト イロト イヨト イヨト

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n \mathbf{h}_i^k + Q(\nabla f_i(\mathbf{x}^k) - \mathbf{h}_i^k)$$

- Main idea: quantize the difference between the gradient and an estimation [Mishchenko et al. '19, Liu et al. '20]
- Assume that all nodes have the true solution \mathbf{x}^* . In general, we have.

$$\mathbf{x} = \mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n \mathbf{h}_i + Q(\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i)$$

= $\mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^*) + \frac{\eta}{n} \sum_{i=1}^n (\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i - Q(\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i))$

• For a positive η , if we can have $\mathbf{h}_i = \nabla f_i(\mathbf{x}^*)$, then we have $\mathbf{x} = \mathbf{x}^*$.

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{\eta}{n} \sum_{i=1}^n \mathbf{h}_i^k + Q(\nabla f_i(\mathbf{x}^k) - \mathbf{h}_i^k)$$

- Main idea: quantize the difference between the gradient and an estimation [Mishchenko et al. '19, Liu et al. '20]
- Assume that all nodes have the true solution \mathbf{x}^* . In general, we have.

$$\mathbf{x} = \mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n \mathbf{h}_i + Q(\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i)$$

= $\mathbf{x}^* - \frac{\eta}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^*) + \frac{\eta}{n} \sum_{i=1}^n (\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i - Q(\nabla f_i(\mathbf{x}^*) - \mathbf{h}_i))$

- For a positive η , if we can have $\mathbf{h}_i = \nabla f_i(\mathbf{x}^*)$, then we have $\mathbf{x} = \mathbf{x}^*$.
- Question: How to update **h**_i?

$$\mathbf{h}_i^{k+1} = \mathbf{h}_i^k + \alpha Q(\nabla f_i(\mathbf{x}^k) - \mathbf{h}_i^k)$$

- Direct compression: large variance, works when the variance converges to zero
- Error compensation: smaller variance compared to the direct compression, also works when the variance converges to zero
- Difference compression: the variance converges to zero.

イロト イボト イヨト イヨ

Input: Stepsize $\alpha, \beta, \gamma, \eta$, initialize $\mathbf{h}^0 = \mathbf{h}^0_i = \mathbf{0}^d$, $\hat{\mathbf{x}}^0_i = \hat{\mathbf{x}}^0$, $\forall i \in \{1, \dots, n\}$. for $k = 1, 2, \dots, K - 1$ do

For each worker $\{i = 1, 2, \dots, n\}$: Gradient residual: $\Delta_i^k = \nabla f_i(\hat{\mathbf{x}}_i^k) - \mathbf{h}_i^k$ Compression: $\hat{\Delta}_i^k = Q(\Delta_i^k)$ $\mathbf{h}_i^{k+1} = \mathbf{h}_i^k + \alpha \hat{\Delta}_i^k$ Sent $\hat{\Delta}_i^k$ to the master Receive $\hat{\mathbf{q}}^k$ from the master $\hat{\mathbf{x}}_i^{k+1} = \hat{\mathbf{x}}_i^k + \beta \hat{\mathbf{q}}^k$ For the master:

Receive $\hat{\Delta}_{i}^{k}$ s from workers $\hat{\Delta}^{k} = 1/n \sum_{i}^{n} \hat{\Delta}_{i}^{k}$ $\hat{\mathbf{g}}^{k} = \mathbf{h}^{k} + \hat{\Delta}^{k}$ $\mathbf{h}^{k+1} = \mathbf{h}^{k} + \alpha \hat{\Delta}^{k} \{= \frac{1}{n} \sum_{i=1}^{n} \mathbf{h}_{i}^{k+1}\}$ $\mathbf{q}^{k} = -\eta \hat{\mathbf{g}}^{k} + \gamma \mathbf{e}^{k}$ Compression: $\hat{\mathbf{q}}^{k} = Q(\mathbf{q}^{k})$ $\mathbf{e}^{k+1} = \mathbf{q}^{k} - \hat{\mathbf{q}}^{k}$ Broadcast $\hat{\mathbf{q}}^{k}$ to workers

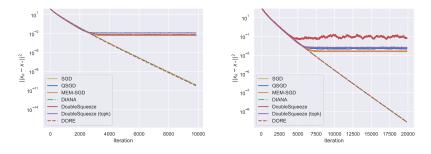
< ロ ト < 回 ト < 三 ト < 三 ト</p>

end for Output: any $\hat{\mathbf{x}}_i^K$

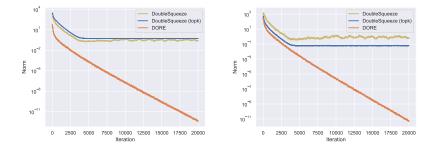
- The worker nodes compress the residual.
- The master node uses error compensation and broadcasts the compressed update (which converges to **0**).

Algorithm	Compression	Compress. Model	Linear	Nonconvex Rate
SGD	No	No	\checkmark	$\frac{1}{\sqrt{Kn}} + \frac{1}{K}$
QSGD	Grad	2-norm	N/A	$\frac{1}{K} + B$
MEM-SGD	Grad	k-contraction	N/A	N/A
DIANA	Grad	<i>p</i> -norm	√	$\frac{1}{\sqrt{Kn}} + \frac{1}{K}$
DoubleSqueeze	Grad + Model	Bdd Variance	N/A	$\frac{1}{\sqrt{Kn}} + \frac{1}{K^{2/3}} + \frac{1}{K}$
DORE	Grad + Model	Assum. 1	\checkmark	$\frac{1}{\sqrt{Kn}} + \frac{1}{K}$

Convergence complexity comparison

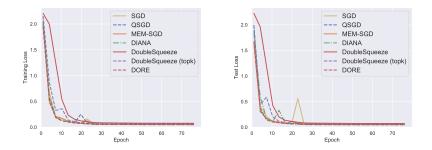


- f(x) = ||Ax b||² + λ||x||² with A ∈ ℝ^{1200×500}. The rows of A are allocated evenly to 20 worker nodes. We take the exact gradient in each node to exclude the effect of the gradient variance (i.e., σ = 0). Left: γ = 0.05, Right: γ = 0.025.
- Linear convergence: DORE, SGD, DIANA; Not converge: QSGD, MEM-SGD, DoubleSqueeze (diverges in Left figure), DoubleSqueeze (topk)



- The norm of the variable to be compressed in all algorithms. Left: the worker node; Right: the master node.
- The norm of the variable decreases exponentially for DORE, while that of DoubleSqueeze does not decrease after certain iterations.

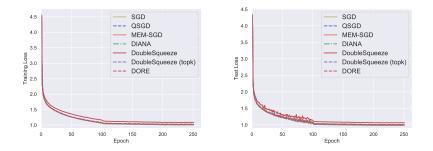
イロト イボト イヨト イヨト



• We use 1 parameter server and 10 worker nodes, each of which is equipped with an NVIDIA Tesla K80 GPU. The batch size for each worker node is 256. Learning rate is 0.1 and decreases by a factor of 0.1 after every 25 epochs.

イロト イロト イヨト イヨト

Resnet18 Trained on CIFAR10



• We use 1 parameter server and 10 worker nodes, each of which is equipped with an NVIDIA Tesla K80 GPU. The batch size for each worker node is 256. Learning rate is 0.01 and decreases by a factor of 0.1 after every 100 epochs.

イロト イロト イヨト イヨ

- Stochastic gradient descent: replace ∇f_i(x^k) by a stochastic approximation g^k_i. It is unbiased Eg^k_i = ∇f_i(x^k) and has positive variance.
- Variance reduction techniques: SVRG, SAGA, SARAH.
- Momentum method: momentum SGD, STORM, ROOT-SGD, IGT.
- For stochastic gradient without variance reduction, error compensation may be good enough and the compression error will not converge to zero.
- However, for stochastic with momentum, error compensation can not remove previous errors.

<ロト <回ト < 注ト < 注ト

Momentum update

$$\mathbf{v}^k = (1 - \alpha_k)\mathbf{v}^{k-1} + \alpha_k \mathbf{g}^k, \quad \mathbf{x}^{k+1} = \mathbf{x}^k - \eta \mathbf{v}^k,$$

where \mathbf{g}^k is an estimation of the gradient at \mathbf{x}^k .

	α_k	\mathbf{g}^k
SGD	1	$\nabla f_i(\mathbf{x}^k; \xi_k)$
Momentum SGD	α	$\nabla f_i(\mathbf{x}^k; \xi_k)$
STORM	α	$\frac{1}{\alpha_k} \left(\nabla f_i(\mathbf{x}^k; \xi_k) - (1 - \alpha_k) \nabla f_i(\mathbf{x}^{k-1}; \xi_k) \right)$
ROOT-SGD	1/k	$\frac{1}{\alpha_k} \left(\nabla f_i(\mathbf{x}^k; \xi_k) - (1 - \alpha_k) \nabla f_i(\mathbf{x}^{k-1}; \xi_k) \right)$
IGT	α	$ abla f_i\left(\mathbf{x}^k+rac{1-lpha_k}{lpha_k}(\mathbf{x}^k-\mathbf{x}^{k-1});\xi_k ight)$

Standard error compensation without momentum:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \eta Q(\mathbf{g}^k + \mathbf{e}^{k-1}), \quad \mathbf{e}^k = \mathbf{g}^k + \mathbf{e}^{k-1} - Q(\mathbf{g}^k + \mathbf{e}^{k-1}).$$

イロト イロト イヨト イヨト

Error Accumulation (Let $\alpha_k = \alpha$ and $\mathbf{v}^{-1} = \mathbf{0}$)

No compression:

$$\mathbf{x}^{T} = \mathbf{x}^{0} - \eta \sum_{t=0}^{T-1} \sum_{s=0}^{t} \alpha (1-\alpha)^{t-s} \mathbf{g}^{s} = \mathbf{x}^{0} - \eta \sum_{t=0}^{T-1} \sum_{s=0}^{t-1} \alpha (1-\alpha)^{t-s} \mathbf{g}^{s} - \alpha \eta \sum_{t=0}^{T-1} \mathbf{g}^{t}$$

Simple compression on g:

$$\mathbf{x}^{T} = \mathbf{x}^{0} - \eta \sum_{t=0}^{T-1} \sum_{s=0}^{t} \alpha (1-\alpha)^{t-s} (\mathbf{g}^{s} - \mathbf{e}^{s})$$

= $\mathbf{x}^{0} - \eta \sum_{t=0}^{T-1} \sum_{s=0}^{t} \alpha (1-\alpha)^{t-s} \mathbf{g}^{s} + \eta \sum_{s=0}^{T-2} (1-(1-\alpha)^{T-s}) \mathbf{e}^{s} + \eta \alpha \mathbf{e}^{T-1}$

Error compensation $(\mathbf{e}^{-1} = \mathbf{0})$:

$$\mathbf{x}^{T} = \mathbf{x}^{0} - \eta \sum_{t=0}^{T-1} \sum_{s=0}^{t} \alpha (1-\alpha)^{t-s} (\mathbf{g}^{s} + \mathbf{e}^{s-1} - \mathbf{e}^{s})$$

= $\mathbf{x}^{0} - \eta \sum_{t=0}^{T-1} \sum_{s=0}^{t} \alpha (1-\alpha)^{t-s} \mathbf{g}^{s} + \eta \sum_{s=0}^{T-2} \alpha (1-\alpha)^{T-1-s} \mathbf{e}^{s} + \eta \alpha \mathbf{e}^{T-1}$

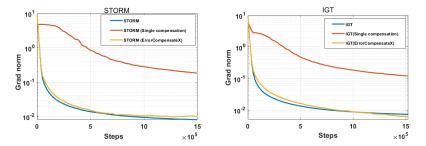
When $\alpha = 1$ (no momentum), the error is just ηe^{T-1} . However, α is usually very small if momentum is applied.

ErrorCompensedX ($\mathbf{e}^{-1} = \mathbf{e}^{-2} = \mathbf{0}$):

$$\mathbf{x}^{T} = \mathbf{x}^{0} - \eta \sum_{t=0}^{T-1} \sum_{s=0}^{t} \alpha (1-\alpha)^{t-s} (\mathbf{g}^{s} + (1-\alpha)(\mathbf{e}^{s-1} - \mathbf{e}^{s-2}) + \mathbf{e}^{s-1} - \mathbf{e}^{s})$$
$$= \mathbf{x}^{0} - \eta \sum_{t=0}^{T-1} \sum_{s=0}^{t} \alpha (1-\alpha)^{t-s} \mathbf{g}^{s} + \eta \alpha \mathbf{e}^{T-1}$$

The error does not accumulate!

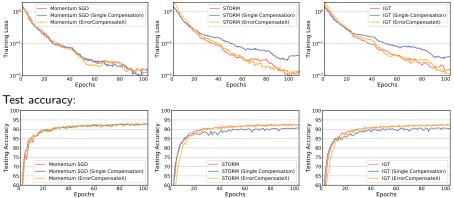
Convergence speed comparison on linear regression for STORM and IGT with different compression techniques.



The y-axis is the norm of the full gradient. The batch size equals 1, $\alpha_k = 1/k$, and we use 1-bit compression.

イロト イロト イヨト イヨト

Epoch-wise convergence comparison on ResNet-50: Training loss:



Introduction

2 Centralized Learning and Communication Compression

- Compression Operators
- Centralized Learning with Compression

3 Decentralized Optimization

- Decentralization
- Consensus Problem
- Decentralized Algorithms
- A Unified Framework for Decentralized Problem

4 Decentralized Learning with Compression

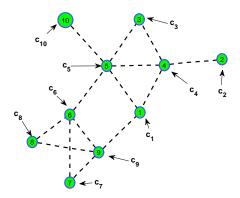
- DGD-type Algorithms with Compression
- Primal-Dual Algorithms with Compression
- Gradient-Tracking Algorithms with Compression

5 Summary and Future Direction

イロト イボト イヨト イヨ

Decentralized Averaging

- Settings:
 - - A connected network with n agents, denoted as $\mathcal{V} = \{1, 2, \cdots, n\}$.
 - - Each agent *i* holds a local number (vector) *c_i* privately.
 - Agent *i* can exchange the number (vector) with agent *j* if and only if *j* is the neighbour of *i*, denoted as *j* ∈ N_i.
- Objective: Each agent obtains the averaged number (vector) $\bar{c} = \frac{1}{n} \sum_{i=1}^{n} c_i$.



(日)

- Method: linear iterative averaging (gossip algorithm)
 - Assign each agent *i* an own model variable *x_i*.
 - Initialize $x_i^0 = c_i$.
 - Update the variable via

$$x_i^{k+1} = w_{ii}x_i^k + \sum_{j \in \mathcal{N}_i} w_{ij}x_j^k$$

with given set of weights $\{w_{ij} : i, j \in \mathcal{V}\}$.

- Examples of weight set:
 - Metropolis weights, i.e., $w_{ij} = \frac{1}{\max\{|\mathcal{N}_i|, |\mathcal{N}_j|\}+1}$ if $j \in \mathcal{N}_i$, $w_{ii} = 1 \sum_{j \in \mathcal{N}_i} w_{ij}$ and $w_{ij} = 0$ otherwise.
 - Fastest distributed linear averaging in [Xiao-Boyd '04].

Decentralized Averaging

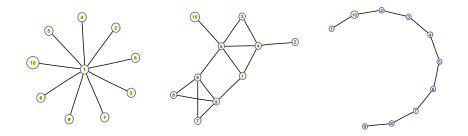


Figure: Star graph, random graph and line graph with 10 agents

- Consider the graph structure of the distributed system, G = (V, E) where E is the set of connection relation among agents in V.
- All agents form an undirected connected graph.
- Edges characterize the connection among agents.

イロト イヨト イヨト イ

The problem is formulated as the minimization with constraint

$$\min_{\mathbf{x}_1,\cdots,\mathbf{x}_n\in\mathbb{R}^p} \frac{1}{2} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{c}_i\|^2 \quad \text{s.t. } \mathbf{x}_1 = \mathbf{x}_2 \cdots = \mathbf{x}_n$$
(2)

The linear iterative averaging is formulated as

$$\mathbf{X}^{k+1} = \mathbf{W}\mathbf{X}^k$$

where $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n]^{\top}$ and \mathbf{W} is the matrix with entries in $\{w_{ii} : i, j \in \mathcal{V}\}$

- By construction, **W** is symmetric and doubly stochastic, i.e., W1 = 1 and $\mathbf{1}^{\mathsf{T}}\mathbf{W} = \mathbf{1}^{\mathsf{T}}$
- Let $\mathbf{X}^{\infty} = \mathbf{\bar{c}1}$ and $\Pi = \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}$ (averaging matrix)
 - $\|\mathbf{X}^{k+1} \mathbf{X}^{\infty}\|^2 < \lambda_{\max}^2 (\mathbf{W} \Pi) \|\mathbf{X}^k \mathbf{X}^{\infty}\|^2$

• Each \mathbf{x}_i^k converges to $\overline{\mathbf{c}}$ linearly at the rate of $\lambda_{\max}^2(\mathbf{W} - \Pi)$ if $\|\mathbf{W} - \Pi\|_2 < 1$. $=\max\{|\lambda_2(\mathbf{W})|, |\lambda_n(\mathbf{W})|\}$

<ロト <回ト < 注ト < 注ト -

- W mixing matrix (gossip matrix) defined over the undirected network G:
 - symmetric and W1 = 1.
 - $\|\mathbf{W} \mathbf{\Pi}\|_2 < 1 \Rightarrow -1 < \lambda_n(\mathbf{W}) \leq \cdots \leq \lambda_2(\mathbf{W}) < \lambda_1(\mathbf{W}) = 1.$
- Decentralized consensus problem for averaging:

$$\underset{\mathbf{X}\in\mathbb{R}^{n\times p}}{\text{minimize}} \ \mathbf{f}(\mathbf{X}) \coloneqq \frac{1}{2}\sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{c}_{i}\|^{2} \quad \text{ s.t. } (\mathbf{I} - \mathbf{W})\mathbf{X} = \mathbf{0}.$$

- Consensus: WX = X iff $x_1 = x_2 = \cdots = x_n$.
- The general decentralized consensus problem (DCP):

$$\underset{\mathbf{X}\in\mathbb{R}^{n\times p}}{\text{minimize}} \mathbf{f}(\mathbf{X}) \coloneqq \sum_{i=1}^{n} f_{i}(\mathbf{x}_{i}) \quad \text{ s.t. } (\mathbf{I}-\mathbf{W})\mathbf{X} = \mathbf{0}$$

where $f_i(\mathbf{x}_i)$ is a differentiable convex function.

• The general decentralized consensus composite problem (DCCP):

$$\min_{\mathbf{X} \in \mathbb{R}^{n \times p}} \mathbf{f}(\mathbf{X}) + \mathbf{r}(\mathbf{X}) \coloneqq \sum_{i=1}^{n} f_i(\mathbf{x}_i) + \sum_{i=1}^{n} r_i(\mathbf{x}_i) \quad \text{ s.t. } (\mathbf{I} - \mathbf{W})\mathbf{X} = \mathbf{0},$$

where $r_i(\mathbf{x})$ is a convex (possibly) non-smooth regularizer.

- Consider the setting:
 - f is L-smooth and µ-strongly convex, i.e.,

$$\frac{\mu}{2}\|\mathbf{a}-\mathbf{b}\|^2 \leq f_i(\mathbf{a}) - f_i(\mathbf{b}) - \langle \nabla f_i(\mathbf{b}), \mathbf{a}-\mathbf{b}\rangle \leq \frac{L}{2}\|\mathbf{a}-\mathbf{b}\|^2, \quad \forall \mathbf{a}, \mathbf{b} \in \mathbb{R}^p.$$

- $r_i(\mathbf{x}) = r_j(\mathbf{x})$ for $i, j \in \mathcal{V}$ (shared regularizer)
- The proximal gradient mapping,

$$\operatorname{prox}_{\eta r_i}(\mathbf{x}) = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^p} r_i(\mathbf{y}) + \frac{1}{2\eta} \|\mathbf{y} - \mathbf{x}\|^2.$$

イロト イボト イヨト イヨト

- Decentralized Gradient Descent (DGD) in [Nedic-Ozdaglar '09]
 - aims to solve DCP.
 - combine mixing step (communication procedure) with gradient descent.

$$\mathbf{X}^{k+1} = \mathbf{W}\mathbf{X}^k - \eta \nabla \mathbf{f}(\mathbf{X}^k)$$

• In agent *i*'s perspective,

$$\left(\mathbf{x}_{i}^{k+1} = \underbrace{w_{ii}\mathbf{x}_{i}^{k} + \sum_{j \in \mathcal{N}_{i}} w_{ij}\mathbf{x}_{j}^{k}}_{\text{mixing step}} - \underbrace{\eta \nabla f_{i}(\mathbf{x}_{i}^{k})}_{\text{gradient descent}}\right)$$

• Taking fixed stepsize $\eta \in (0, \min\{\frac{1+\lambda_n(\mathbf{W})}{L}, \frac{1}{L+\mu}\}]$ in [Yuan et al. '16],

$$\|\mathbf{X}^{k} - \mathbf{X}^{*}\| \leq \mathcal{O}(\rho^{k}) + \mathcal{O}(\eta).$$

- $\bullet\,$ "Near" convergence: linear rate to the neighbourhood of $x^*.$
- Diminishing stepsize for exact convergence.

・ロト ・ 四ト ・ モト・ モト・

- One explanatory view:
 - Reformulate the iteration of DGD as

$$\mathbf{X}^{k+1} = \mathbf{X}^{k} - \underbrace{[(\mathbf{I} - \mathbf{W})\mathbf{X}^{k} + \eta \nabla \mathbf{f}(\mathbf{X}^{k})]}_{\text{gradient descent}}$$

• Gradient descent with stepsize 1 for the different problem

$$\underset{\mathbf{X}\in\mathbb{R}^{p\times d}}{\text{minimize}} \quad \frac{1}{2}\|\sqrt{\mathbf{I}-\mathbf{W}}\mathbf{X}\|^2 + \eta \mathbf{f}(\mathbf{X})$$

 $\bullet\,$ The solution X^{\dagger} to this problem is generally non-consensus, i.e.,

$$\mathbf{W}\mathbf{X}^{\dagger} = \mathbf{X}^{\dagger} + \eta \nabla \mathbf{f}(\mathbf{X}^{\dagger}) \neq \mathbf{X}^{\dagger}.$$

• $\eta \rightarrow 0$, i.e., decreasing η in iterations, guarantees the consensus.

Decentralized Gradient Descent

- Another explanatory view:
 - Recall DGD:

$$\mathbf{X}^{k+1} = \mathbf{W}\mathbf{X}^k - \eta \nabla \mathbf{f}(\mathbf{X}^k)$$

• The limit point \mathbf{X}^{∞} :

$$(\mathbf{I} - \mathbf{W})\mathbf{X}^{\infty} = -\eta \nabla \mathbf{f}(\mathbf{X}^{\infty})$$

• The consensus of X^{∞} \Leftrightarrow $\nabla f(X^{\infty}) = 0$.

• In general,
$$abla {f f}({f X}^*)
eq {f 0}.$$
 Instead,

$$\frac{1}{n} \mathbf{1}^{\top} \nabla \mathbf{f}(\mathbf{X}^*) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}_i^*) = \mathbf{0}$$

• If we replace $\nabla f(\mathbf{X}^k)$ by \mathbf{Y}^k and $\mathbf{Y}^k \to \mathbf{0}$,

$$(\mathbf{I} - \mathbf{W})\mathbf{X}^{\infty} = -\eta \mathbf{Y}^{\infty} = \mathbf{0},$$

we can achieve the consensus.

• One form of tracking method to tackle DCP

Aug-DGM:
$$\begin{bmatrix} \mathbf{X}^{k+1} = \mathbf{W}\mathbf{X}^{k} - \eta \mathbf{Y}^{k} \\ \mathbf{Y}^{k+1} = \mathbf{W}\mathbf{Y}^{k} + \nabla \mathbf{f}(\mathbf{X}^{k+1}) - \nabla \mathbf{f}(\mathbf{X}^{k}) \end{bmatrix}$$

- Y is the tracking variable.
- Y preserve the gradient average

$$\mathbf{Y}^0 = \nabla \mathbf{f}(\mathbf{X}^0) \quad \Rightarrow \quad \frac{1}{n} \mathbf{1}^\top \mathbf{Y}^k = \frac{1}{n} \mathbf{1}^\top \nabla \mathbf{f}(\mathbf{X}^k)$$

• The limit point of Y satisfies

$$(\mathbf{I} - \mathbf{W})\mathbf{Y}^{\infty} = \mathbf{0}$$

 $\mathbf{Y}^{\infty} = \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}\nabla \mathbf{f}(\mathbf{X}^{\infty})$

• X^{∞} reaches the consensus $\Leftrightarrow Y^{\infty} = 0 \Leftrightarrow X^{\infty}$ is solution.

• More forms of gradient tracking can be found in Aug-DGM [Xu et al. '15], Next [Di Lorenzo-Scutari '16],DIGing[Qu-Li '17, Nedic et al. '17] and SONATA [Scutari-Sun '19].

• The exact convergence with fixed stepsize

$$\eta \in \left(0, \frac{(1 - \max\{|\lambda_2(\mathbf{W})|, |\lambda_n(\mathbf{W})|\})^2}{(1 + \sqrt{\frac{L}{\mu} + 3})L}\right)$$

 \mathbf{X}^k converges to \mathbf{X}^* linearly.

- Extension: Push-Pull algorithm over directed network [Pu et al. '20].
- Drawback: one more communication per iteration.
- Question:
 - 1. Linear convergent algorithm with better communication rounds?
 - 2. Algorithm with larger stepsize?

イロト イロト イヨト イヨ

- EXTRA proposed in [Shi et al. '15] uses one more historical variable to reach consensus.
- Consider two consecutive iterations of DGD with different mixing matrices

$$\begin{bmatrix} \mathbf{X}^{k+2} = \mathbf{W}\mathbf{X}^{k+1} - \eta\nabla \mathbf{f}(\mathbf{X}^{k+1}) \\ \mathbf{X}^{k+1} = \frac{\mathbf{I} + \mathbf{W}}{2}\mathbf{X}^{k} - \eta\nabla \mathbf{f}(\mathbf{X}^{k}) \end{bmatrix}$$

• Combine two iterations,

EXTRA/NIDS

• Consensus,

$$\mathbf{X}^{\infty} = \frac{\mathbf{I} + \mathbf{W}}{2} \mathbf{X}^{\infty} - \eta \nabla \mathbf{f}(\mathbf{X}^{\infty}) + \eta \nabla \mathbf{f}(\mathbf{X}^{\infty}) \quad \Rightarrow \quad (\mathbf{I} - \mathbf{W}) \mathbf{X}^{\infty} = \mathbf{0}.$$

• Optimality, taking telescopic sum,

$$\mathbf{X}^{\mathbf{X}} = \mathbf{W}\mathbf{X}^{0} - g\nabla\mathbf{F}(\mathbf{X}^{\mathbf{\theta}})$$
$$\mathbf{X}^{2} - \mathbf{X}^{\mathbf{X}} = \mathbf{W}\mathbf{X}^{1} - \frac{\mathbf{I} + \mathbf{W}}{2}\mathbf{X}^{0} - g\nabla\mathbf{F}(\mathbf{X}^{\mathbf{\theta}}) + g\nabla\mathbf{F}(\mathbf{X}^{\mathbf{\theta}})$$
$$\vdots$$
$$\mathbf{X}^{k+1} - \mathbf{X}^{\mathbf{X}} = \mathbf{W}\mathbf{X}^{k} - \frac{\mathbf{I} + \mathbf{W}}{2}\mathbf{X}^{k-1} - \eta\nabla\mathbf{f}(\mathbf{X}^{k}) + g\nabla\mathbf{F}(\mathbf{X}^{k-1})$$
$$\downarrow$$
$$\mathbf{X}^{k+1} = \underbrace{\mathbf{W}\mathbf{X}^{k} - \eta\nabla\mathbf{f}(\mathbf{X}^{k})}_{\mathsf{DGD}} - \underbrace{\sum_{t=0}^{k-1}\frac{\mathbf{I} - \mathbf{W}}{2}\mathbf{X}^{t}}_{\mathsf{correction}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

EXTRA/NIDS

 $\bullet\,$ The consensus of X^∞ implies the optimality

$$\mathbf{X}^{\infty} = \mathbf{W} \mathbf{X}^{\infty} - \eta \nabla \mathbf{f}(\mathbf{X}^{\infty}) - \sum_{t=0}^{\infty} \frac{\mathbf{I} - \mathbf{W}}{2} \mathbf{X}^{t}.$$
$$\Downarrow$$
$$\eta \mathbf{1}^{\top} \nabla \mathbf{f}(\mathbf{X}^{\infty}) = \eta \sum_{i=1}^{n} \nabla f_{i}(\mathbf{x}^{\infty}_{i}) = -\mathbf{1}^{\top} \sum_{t=0}^{\infty} \frac{\mathbf{I} - \mathbf{W}}{2} \mathbf{X}^{t} = \mathbf{0}.$$

• The exact linear convergence with fixed stepsize

$$\eta \in \left(0, \frac{1+\lambda_n(\mathbf{W})}{L}\right).$$

• Extension: larger stepsize over relaxed mixing matrix [Li-Yan '21], i.e.,

$$-rac{5}{3} < \lambda_n(\mathbf{W}) \leq \cdots \leq \lambda_2(\mathbf{W}) < \lambda_1(\mathbf{W}) = 1,$$

the linear convergence is preserved when $\lambda_{\it n}({\bf W}) \leq -1$

$$\eta \in \left(0, \frac{5+3\lambda_n(\mathbf{W})}{4L}\right).$$

• NIDS is proposed in [Li et al. '19].

NIDS:
$$\mathbf{X}^{k+2} = \frac{\mathbf{I} + \mathbf{W}}{2} [2\mathbf{X}^{k+1} - \mathbf{X}^k - \eta \nabla \mathbf{f}(\mathbf{X}^{k+1}) + \eta \nabla \mathbf{f}(\mathbf{X}^k)]$$

EXTRA: $\mathbf{X}^{k+2} = \frac{\mathbf{I} + \mathbf{W}}{2} (2\mathbf{X}^{k+1} - \mathbf{X}^k) - \eta \nabla \mathbf{f}(\mathbf{X}^{k+1}) + \eta \nabla \mathbf{f}(\mathbf{X}^k)$

• The only difference is the communication of gradient, but NIDS converges linearly with

$$\eta \in \left(0, \frac{2}{L}\right)$$

- The stepsize is independent on the network.
- The stepsize is consistent with that in gradient descent
- Extension: NIDS also preserves linear convergence over relaxed mixing matrix with the same stepsize.

イロト イボト イヨト イヨ

- Compared to gradient tracking methods, EXTRA/NIDS converges faster due to the larger stepsize.
- EXTRA/NIDS communicates only once per iteration.
- EXTRA/NIDS has proximal variant to solve DCCP (DCP+regularizer).

PG-EXTRA:

$$\begin{vmatrix}
\mathbf{Y}^{k+2} = \mathbf{W}\mathbf{X}^{k+1} + \mathbf{Y}^{k+1} - \frac{\mathbf{I} + \mathbf{W}}{2}\mathbf{X}^{k} - \eta\nabla \mathbf{f}(\mathbf{X}^{k+1}) + \eta\nabla \mathbf{f}(\mathbf{X}^{k}) \\
\mathbf{X}^{k+2} = \mathbf{prox}_{\eta r}(\mathbf{Y}^{k+2})
\end{vmatrix}$$
NIDS:

$$\begin{vmatrix}
\mathbf{Y}^{k+2} = \mathbf{W}\mathbf{X}^{k+1} + \mathbf{Y}^{k+1} - \frac{\mathbf{I} + \mathbf{W}}{2} & \left[\mathbf{X}^{k} + \eta\nabla \mathbf{f}(\mathbf{X}^{k+1}) - \eta\nabla \mathbf{f}(\mathbf{X}^{k})\right] \\
\mathbf{X}^{k+2} = \mathbf{prox}_{\eta r}(\mathbf{Y}^{k+2})
\end{cases}$$

• Drawback: it is difficult to adapt and analyze EXTRA/NIDS for directed network.

イロト イロト イヨト イヨト

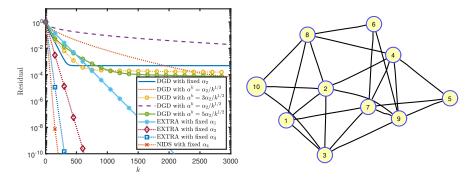


Figure: LEFT: the error $\frac{\|\mathbf{x}^k - \mathbf{x}^*\|_F}{\|\mathbf{x}^0 - \mathbf{x}^*\|_F}$ vs iterations for DGD with different stepsizes, EXTRA with three stepsizes, and NIDS. RIGHT: The random network with 10 nodes. Figure from [Li-Yan '21]

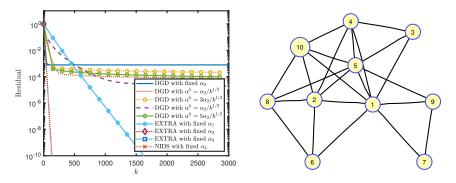


Figure: LEFT: the error $\frac{\|\mathbf{x}^k - \mathbf{x}^*\|_F}{\|\mathbf{x}^0 - \mathbf{x}^*\|_F}$ vs iterations for DGD with different stepsizes, EXTRA with three stepsizes, and NIDS. RIGHT: The random network with 10 nodes. Figure from [Li-Yan '21]

- Dual Averaging [Duchi et al. '11]
- Augmented Lagrangian Method [Gharesifard-Cortés '13]
- Fast Distributed Gradient Method [Jakovetić et al. '14]
- D-ADMM [Shi et al. '14]
- DLM [Ling et al. '15]
- Stochastic Gradient Push [Nedić-Olshevsky '16]
- SDCS [Lan et al. '20]

For more algorithms, refer to survey [Nedić et al. '18]

<ロト < 回 ト < 臣 ト < 臣 ト

• PUDA proposed in [Alghunaim et al. '20] to solve DCCP (DCP + non-smooth regularizer)

$$\begin{aligned} \textbf{PUDA:} \quad \left| \begin{array}{l} \textbf{Z}^{k+1} = (\textbf{I} - \textbf{C})\textbf{X}^{k} - \eta \nabla \textbf{f}(\textbf{X}^{k}) - \textbf{B}\textbf{Y}^{k} \\ \textbf{Y}^{k+1} = \textbf{Y}^{k} + \textbf{B}\textbf{Z}^{k+1} \\ \textbf{X}^{k+1} = \textbf{prox}_{\eta \textbf{r}}(\overline{\textbf{A}}\textbf{Z}^{k+1}) \end{aligned} \right. \end{aligned}$$

- \overline{A} , B, C are symmetric matrices dependent on mixing matrix W.
- When $\mathbf{r} = \mathbf{0}$, i.e., no regularizer, the framework covers many algorithms.
 - Aug-DGM: $\overline{\mathbf{A}} = \mathbf{W}^2$, $\mathbf{B} = \mathbf{I} \mathbf{W}$ and $\mathbf{C} = \mathbf{0}$.
 - DIGing: $\overline{A} = I, B = I W$ and $C = I W^2$.
 - EXTRA: $\overline{A} = I, B = \frac{I-W}{2}$ and $C = \frac{I-W}{2}$.
 - NIDS: $\overline{A} = \frac{I+W}{2}, B = \frac{I-W}{2}$ and C = 0.
- PUDA provides (new) proximal variants for these algorithms.

イロト イボト イヨト イヨト

• Assumptions on $\overline{\mathbf{A}}$, \mathbf{B} and \mathbf{C} :

- (1) $BX = 0 \Leftrightarrow x_1 = x_2 = \cdots = x_n$. (2) C = 0 or $CX = 0 \Leftrightarrow BX = 0$.
- (3) $\bar{A}^2 < I B^2$ and 0 < C < 2I.
- Global linear convergence

Theorem (Linear rate with fixed stepsize)

Let $\eta < \frac{2-\lambda_1(\mathbf{C})}{I}$, it holds that

$$\|\boldsymbol{\mathsf{X}}^k-\boldsymbol{\mathsf{X}}^*\|^2+\|\boldsymbol{\mathsf{Y}}^k-\boldsymbol{\mathsf{Y}}^*\|^2\leq\gamma(\|\boldsymbol{\mathsf{X}}^{k-1}-\boldsymbol{\mathsf{X}}^*\|^2+\|\boldsymbol{\mathsf{Y}}^{k-1}-\boldsymbol{\mathsf{Y}}^*\|^2),$$

where

$$\gamma = \max\{1 - \eta \mu (2 - \lambda_1(\mathbf{C}) - \eta L), 1 - \lambda_{\min}(\mathbf{B}^2)\} < 1.$$

Logistic regression with $\ell_2 + \ell_1$ regularizer.

$$f_i(\mathbf{x}_i) = \frac{1}{L} \sum_{l=1}^{L} \ln(1 + \exp(-y_{i,l} \mathbf{w}_{i,l}^{\top} \mathbf{x}_i)) + \frac{\lambda}{2} \|\mathbf{x}_i\|^2, \quad r_i(\mathbf{x}_i) = \rho \|\mathbf{x}_i\|_1$$

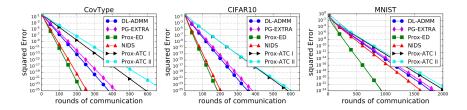


Figure: Simulation results for three datasets. Prox-ED is a new proximal variant of NIDS. Prox-ATC I and II are proximal variants of gradient tracking methods. Figure from [Alghunaim et al. '20]

Introduction

2 Centralized Learning and Communication Compression

- Compression Operators
- Centralized Learning with Compression

3 Decentralized Optimization

- Decentralization
- Consensus Problem
- Decentralized Algorithms
- A Unified Framework for Decentralized Problem

Decentralized Learning with Compression

- DGD-type Algorithms with Compression
- Primal-Dual Algorithms with Compression
- Gradient-Tracking Algorithms with Compression

5 Summary and Future Direction

イロト イボト イヨト イヨ

Selected algorithms

- DGD-type algorithms:
 - DCD-SGD [Tang et al. '18]
 - Choco-SGD [Koloskova et al. '19]
- Primal-dual algorithms:
 - LEAD [Liu et al. '21]
 - LessBit [Kovalev et al. '21]
 - Prox-LEAD [Li et al. '21]
- Gradient-tracking algorithms:
 - C-GT [Liao et al. '21]

(日)

• P-DSGD [Lian et al. '17]: no compression

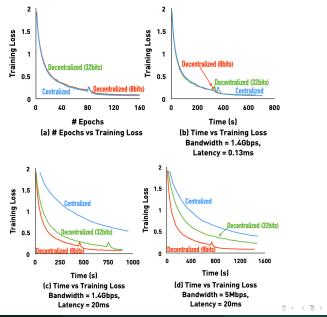
$$\mathbf{X}^{k+1} = \mathbf{W}\mathbf{X}^k - \eta \nabla \mathbf{F}(\mathbf{X}^k; \xi^k)$$

• DCD-PSGD [Tang et al. '18]: difference compression

$$\begin{split} \mathbf{X}^{k+\frac{1}{2}} &= \mathbf{W}\mathbf{X}^{k} - \eta \nabla \mathbf{F}(\mathbf{X}^{k}; \boldsymbol{\xi}^{k}) \\ \begin{bmatrix} \mathbf{W}\mathbf{X}^{k} &= \mathbf{W}\mathbf{X}^{k-1} + \mathbf{W}Q(\mathbf{X}^{k-1+\frac{1}{2}} - \mathbf{X}^{k-1}) \end{bmatrix} \\ \mathbf{X}^{k+1} &= \mathbf{X}^{k} + Q(\mathbf{X}^{k+\frac{1}{2}} - \mathbf{X}^{k}) \end{split}$$

- Convergence: for non-convex and smooth problems: $O(\frac{1}{\sqrt{nK}})$.
- Drawbacks: 1) requires compression with high precision; 2) convergence bias.

DCD-PSGD: Experiment



Distributed Learning

Choco-Gossip: Average Preserving

- Gossip (no compression)
 - Decentralized Average (Gossip):

$$\mathbf{X}^{k+1} = \mathbf{W}\mathbf{X}^k = \mathbf{X}^k - (\mathbf{I} - \mathbf{W})\mathbf{X}^k$$

A relaxed form:

$$\mathbf{X}^{k+1} = \mathbf{X}^k - \gamma (\mathbf{I} - \mathbf{W}) \mathbf{X}^k$$

• Convergence to consensus: $\|\mathbf{X}^k - \mathbf{X}^*\|_F^2 \leq (1 - \gamma \delta)^{2k} \|\mathbf{X}^0 - \mathbf{X}^*\|_F^2$ where $\delta = 1 - |\lambda_2(\mathbf{W})|$.

Choco-Gossip: Average Preserving

- Gossip (no compression)
 - Decentralized Average (Gossip):

$$\mathbf{X}^{k+1} = \mathbf{W}\mathbf{X}^k = \mathbf{X}^k - (\mathbf{I} - \mathbf{W})\mathbf{X}^k$$

A relaxed form:

$$\mathbf{X}^{k+1} = \mathbf{X}^k - \gamma (\mathbf{I} - \mathbf{W}) \mathbf{X}^k$$

- Convergence to consensus: $\|\mathbf{X}^k \mathbf{X}^*\|_F^2 \leq (1 \gamma \delta)^{2k} \|\mathbf{X}^0 \mathbf{X}^*\|_F^2$ where $\delta = 1 |\lambda_2(\mathbf{W})|$.
- Quantized gossip (with compression)
 - Choco-gossip [Koloskova et al. '19]: difference compression

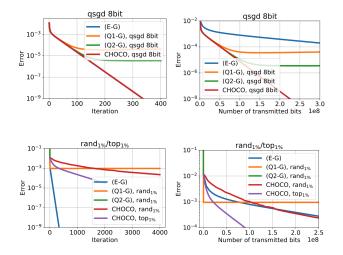
$$\hat{\mathbf{X}}^{k+1} = \hat{\mathbf{X}}^k + Q(\mathbf{X}^k - \hat{\mathbf{X}}^k)$$
$$\mathbf{X}^{k+1} = \mathbf{X}^{k+1} - \gamma(\mathbf{I} - \mathbf{W})\hat{\mathbf{X}}^{k+1}$$
$$\begin{bmatrix} \mathbf{W}\hat{\mathbf{X}}^{k+1} = \mathbf{W}\hat{\mathbf{X}}^k + \mathbf{W}Q(\mathbf{X}^k - \hat{\mathbf{X}}^k) \end{bmatrix}$$

Average preseving:

$$\frac{1}{n}\sum_{i}\mathbf{X}_{i}^{k+1}=\frac{1}{n}\sum_{i}\mathbf{X}_{i}^{k}=\overline{\mathbf{X}}^{*}$$

• Convergence: $\mathbb{E}\mathbf{E}^k \leq (1 - \mathcal{O}(\delta^2(1 - C)))^k \mathbb{E}\mathbf{E}^0$ with a special stepsize γ , when Q is a *C*-contracted compression operator. $\mathbf{E}^k = \|\mathbf{X}^k - \mathbf{X}^*\|_F^2 + \|\mathbf{X}^k - \hat{\mathbf{X}}^{t+1}\|_F^2$

Choco-Gossip: Experiment



Average consensus on the ring topology

• P-DSGD (a slight different form): no compression

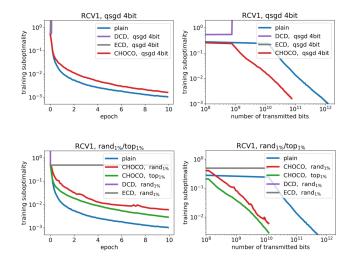
$$\mathbf{X}^{k+1} = \mathbf{W}(\mathbf{X}^k - \gamma \nabla \mathbf{F}(\mathbf{X}^k; \xi^k))$$

• Choco-SGD [Koloskova et al. '19]: with compression

$$\begin{aligned} \mathbf{X}^{k+\frac{1}{2}} &= \mathbf{X}^{k} - \eta_{k} \nabla \mathbf{F}(\mathbf{X}^{k}; \boldsymbol{\xi}^{k}) \\ \hat{\mathbf{X}}^{k+1} &= \hat{\mathbf{X}}^{k+1} + Q(\mathbf{X}^{k+\frac{1}{2}} - \hat{\mathbf{X}}^{k}) \\ \mathbf{X}^{k+1} &= \mathbf{X}^{k+\frac{1}{2}} - \gamma(\mathbf{I} - \mathbf{W}) \hat{\mathbf{X}}^{k+1} \\ \begin{bmatrix} \mathbf{W} \hat{\mathbf{X}}^{k+1} &= \mathbf{W} \hat{\mathbf{X}}^{k} + \mathbf{W} Q(\mathbf{X}^{k} - \hat{\mathbf{X}}^{k}) \end{bmatrix} \end{aligned}$$

- Convergence: for smooth and μ -strongly convex problems, when K is sufficiently large: $\mathbb{E}f(x_{avg}^{K}) f^* = O(\frac{\sigma^2}{\mu nK}).$
- Drawbacks: 1) hard to tune γ and η_k ; 2) slow convergence; 3) convergence bias

Choco-SGD: Experiment



Convergence to the optimality on a ring topology

• Communication Compression for decentralized optimization

- DCD-SGD, ECE-SGD [Tang et al. '18]
- QDGD [Reisizadeh et al. '19a]
- QuanTimed-DSGD [Reisizadeh et al. '19b]
- DeepSqueeze [Tang et al. '19]
- CHOCO-SGD [Koloskova et al. '19]

• ...

• Reduce to DGD-type algorithms, which suffer from convergence bias

$$\mathbf{X}^* \neq \mathbf{W}\mathbf{X}^* - \eta \nabla \mathbf{F}(\mathbf{X}^*).$$

The performance degrade on heterogeneous data, and they converge slowly.

• Since primal-dual algorithms are effective in handling the convergence bias, can we design primal-dual algorithms with compression?

イロト イボト イヨト イヨト

- LEAD [Liu et al. '21] is the first primal-dual decentralized algorithm with compression that attains linear convergence.
- Decentralized consensus problem (DCP)

$$\mathbf{X}^{*} = \underset{\mathbf{X} \in \mathbb{R}^{n \times p}}{\operatorname{arg\,min}} \underbrace{\sum_{i=1}^{n} f_{i}(\mathbf{x}_{i})}_{==\mathbf{F}(\mathbf{X})}, \quad \text{s.t.} \ (\mathbf{I} - \mathbf{W})\mathbf{X} = \mathbf{0}, \tag{3}$$

• Consider the equivalent min-max problem

$$\min_{\mathbf{X} \in \mathbb{R}^{n \times p}} \max_{\mathbf{S} \in \mathbb{R}^{n \times p}} \mathbf{F}(\mathbf{X}) + \langle \mathbf{B}^{\frac{1}{2}} \mathbf{X}, \mathbf{S} \rangle, \tag{4}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

where $\mathbf{B} = \frac{\mathbf{I} - \mathbf{W}}{2}$.

• Consider the equivalent min-max problem

$$\min_{\mathbf{X}\in\mathbb{R}^{n\times p}}\max_{\mathbf{S}\in\mathbb{R}^{n\times p}}\mathbf{F}(\mathbf{X})+\langle\mathbf{B}^{\frac{1}{2}}\mathbf{X},\mathbf{S}\rangle,\tag{5}$$

• We apply primal-dual hybrid gradient method (PDHG) in [Zhu-Chan '08]:

$$\begin{split} & \textbf{PDHG}: \\ & \textbf{X}^{k+1} = \mathop{\arg\min}_{\textbf{X} \in \mathbb{R}^{n \times p}} \textbf{F}(\textbf{X}) + \langle \textbf{B}^{\frac{1}{2}}\textbf{X}, \textbf{S}^{k} \rangle, \\ & \textbf{S}^{k+1} = \textbf{S}^{k} + \lambda \textbf{B}^{\frac{1}{2}}\textbf{X}^{k+1}. \end{split}$$

Consider the equivalent min-max problem

$$\min_{\mathbf{X}\in\mathbb{R}^{n\times p}}\max_{\mathbf{S}\in\mathbb{R}^{n\times p}}\mathbf{F}(\mathbf{X})+\langle\mathbf{B}^{\frac{1}{2}}\mathbf{X},\mathbf{S}\rangle,\tag{5}$$

• We apply primal-dual hybrid gradient method (PDHG) in [Zhu-Chan '08]:

PDHG:

$$\mathbf{X}^{k+1} = \underset{\mathbf{X} \in \mathbb{R}^{n \times p}}{\operatorname{arg\,min}} \mathbf{F}(\mathbf{X}) + \langle \mathbf{B}^{\frac{1}{2}}\mathbf{X}, \mathbf{S}^{k} \rangle,$$

$$\mathbf{S}^{k+1} = \mathbf{S}^{k} + \lambda \mathbf{B}^{\frac{1}{2}}\mathbf{X}^{k+1}.$$

• We solve X-subproblem inexactly by two-step gradient descent with stepsize η :

 $\begin{bmatrix} \text{inexact PDHG} : \\ \mathbf{X}^{k+1} = \mathbf{X}^k - \eta \nabla \mathbf{F}(\mathbf{X}^k) - \eta \mathbf{B}^{\frac{1}{2}} \mathbf{S}^k, \\ \mathbf{Y}^{k+1} = \mathbf{X}^{k+1} - \eta \nabla \mathbf{F}(\mathbf{X}^{k+1}) - \eta \mathbf{B}^{\frac{1}{2}} \mathbf{S}^k, \\ \mathbf{S}^{k+1} = \mathbf{S}^k + \lambda \mathbf{B}^{\frac{1}{2}} \mathbf{Y}^{k+1}. \end{bmatrix}$

《日》《圖》《臣》《臣》

• To share the computation of $\nabla F(\mathbf{X}^k)$ between iterations, we switch the order and let $\mathbf{D} = \mathbf{B}^{\frac{1}{2}}\mathbf{S}$:

inexact PDHG :

$$\mathbf{Y}^{k+1} = \mathbf{X}^{k} - \eta \nabla \mathbf{F}(\mathbf{X}^{k}) - \eta \mathbf{D}^{k},$$

$$\mathbf{D}^{k+1} = \mathbf{D}^{k} + \frac{\lambda}{2} (\mathbf{I} - \mathbf{W}) \mathbf{Y}^{k+1},$$

$$\mathbf{X}^{k+1} = \mathbf{X}^{k} - \eta \nabla \mathbf{F}(\mathbf{X}^{k}) - \eta \mathbf{D}^{k+1}.$$
(6)

- There is only one time communication in **D** step.
- We propose a new **compression procedure** for communication over decentralized networks.

LEAD

• LEAD: set
$$\lambda = \frac{\gamma}{\eta}$$

 $\mathbf{Y}^{k} = \mathbf{X}^{k} - \eta \nabla \mathbf{F}(\mathbf{X}^{k}; \xi^{k}) - \eta \mathbf{D}^{k}$
 $\hat{\mathbf{Y}}^{k} = CompressionProcedure(\mathbf{Y}^{k})$
 $\mathbf{D}^{k+1} = \mathbf{D}^{k} + \frac{\gamma}{2\eta}(\mathbf{I} - \mathbf{W})\hat{\mathbf{Y}}^{k} = \mathbf{D}^{k} + \frac{\gamma}{2\eta}(\hat{\mathbf{Y}}^{k} - \hat{\mathbf{Y}}_{w}^{k})$
 $\mathbf{X}^{k+1} = \mathbf{X}^{k} - \eta \nabla \mathbf{F}(\mathbf{X}^{k}; \xi^{k}) - \eta \mathbf{D}^{k+1}$

• Compression procedure

$$\mathbf{Q}^{k} = \text{Compress}(\mathbf{Y}^{k} - \mathbf{H}^{k}) \quad \triangleright \text{ Compression}$$
$$\hat{\mathbf{Y}}^{k} = \mathbf{H}^{k} + \mathbf{Q}^{k}$$
$$\hat{\mathbf{Y}}^{k}_{w} = \mathbf{H}^{k}_{w} + \mathbf{W}\mathbf{Q}^{k} \quad \triangleright \text{ Communication}$$
$$\mathbf{H}^{k+1} = (1 - \alpha)\mathbf{H}^{k} + \alpha \hat{\mathbf{Y}}^{k}$$
$$\mathbf{H}^{k+1}_{w} = (1 - \alpha)\mathbf{H}^{k}_{w} + \alpha \hat{\mathbf{Y}}^{k}_{w}$$

イロト イヨト イヨト イヨト

How LEAD works?

• Gradient Correction

$$\begin{split} \mathbf{X}^{k+1} &= \mathbf{X}^k - \eta(\nabla \mathbf{F}(\mathbf{X}^k; \xi^k) + \mathbf{D}^{k+1}) \\ & \mathbf{F}(\mathbf{X}^k; \xi^k) + \mathbf{D}^{k+1} \to \mathbf{0} \end{split}$$

• Difference Compression

$$\begin{split} \mathbf{Q}^k &= \text{Compress}(\mathbf{Y}^k - \mathbf{H}^k) \\ \mathbf{Y}^k &\to \mathbf{X}^*, \mathbf{H}^k \to \mathbf{X}^* \Rightarrow \mathbf{Y}^k - \mathbf{H}^k \to \mathbf{0} \Rightarrow \|\mathbf{Q}^k - (\mathbf{Y}^k - \mathbf{H}^k)\| \to \mathbf{0} \end{split}$$

イロト イヨト イヨト イヨト

How LEAD works?

Gradient Correction

$$\begin{split} \mathbf{X}^{k+1} &= \mathbf{X}^k - \eta (\nabla \mathbf{F}(\mathbf{X}^k; \xi^k) + \mathbf{D}^{k+1}) \\ & \mathbf{F}(\mathbf{X}^k; \xi^k) + \mathbf{D}^{k+1} \to \mathbf{0} \end{split}$$

• Difference Compression

$$\begin{split} \mathbf{Q}^k &= \text{Compress}(\mathbf{Y}^k - \mathbf{H}^k) \\ \mathbf{Y}^k &\to \mathbf{X}^*, \mathbf{H}^k \to \mathbf{X}^* \Rightarrow \mathbf{Y}^k - \mathbf{H}^k \to \mathbf{0} \Rightarrow \|\mathbf{Q}^k - (\mathbf{Y}^k - \mathbf{H}^k)\| \to \mathbf{0} \end{split}$$

• Implicit Error Compensation

$$\mathbf{E}^{k} = \hat{\mathbf{Y}}^{k} - \mathbf{Y}^{k}$$
$$\mathbf{D}^{k+1} = \mathbf{D}^{k} + \frac{\gamma}{2\eta}(\hat{\mathbf{Y}}^{k} - \hat{\mathbf{Y}}^{k}_{w}) = \mathbf{D}^{k} + \frac{\gamma}{2\eta}(\mathbf{I} - \mathbf{W})\mathbf{Y}^{k} + \frac{\gamma}{2\eta}(\mathbf{E}^{k} - \mathbf{W}\mathbf{E}^{k})$$

• A global average view

$$ar{\mathbf{X}}^{k+1} = ar{\mathbf{X}}^k - \eta \overline{
abla} \mathbf{F}(\mathbf{X}^k; \xi^k)$$

 $\mathbf{X}^k o ar{\mathbf{X}}^k$

• Advantages: 1) faster convergence; 2) support heterogeneous data well; 2) easy to tune stepsizes η , α and γ (simply setting $\alpha = 0.5$ and $\gamma = 1$ works well).

$$\kappa_{f} = rac{L}{\mu}, \ \ \kappa_{g} = rac{\lambda_{\max}(\mathbf{I} - \mathbf{W})}{\lambda_{\min}^{+}(\mathbf{I} - \mathbf{W})}$$

- Complexity bounds when $\sigma = 0$
 - LEAD converges to the ϵ -accurate solution with the iteration complexity

$$\mathcal{O}\Big(ig((1+\mathcal{C})(\kappa_f+\kappa_g)+\mathcal{C}\kappa_f\kappa_gig)\lograc{1}{\epsilon}\Big).$$

$$\kappa_f = rac{L}{\mu}, \ \ \kappa_g = rac{\lambda_{\max}(\mathbf{I} - \mathbf{W})}{\lambda^+_{\min}(\mathbf{I} - \mathbf{W})}$$

• Complexity bounds when $\sigma = 0$

ł

• LEAD converges to the ϵ -accurate solution with the iteration complexity

$$\mathcal{O}\Big(\big((1+\mathcal{C})(\kappa_f+\kappa_g)+\mathcal{C}\kappa_f\kappa_g\big)\log\frac{1}{\epsilon}\Big).$$

• When C = 0 (i.e., no compression) or $C \le \frac{\kappa_f + \kappa_g}{\kappa_f \kappa_g + \kappa_f + \kappa_g}$, the iteration complexity is

$$\mathcal{O}\Big((\kappa_f + \kappa_g)\log \frac{1}{\epsilon}\Big).$$

This recovers the convergence rate of NIDS [Li et al. '19].

$$\kappa_f = rac{L}{\mu}, \ \ \kappa_g = rac{\lambda_{\max}(\mathbf{I} - \mathbf{W})}{\lambda_{\min}^+(\mathbf{I} - \mathbf{W})}$$

- Complexity bounds when $\sigma = 0$
 - LEAD converges to the ϵ -accurate solution with the iteration complexity

$$\mathcal{O}\Big(\big((1+\mathcal{C})(\kappa_f+\kappa_g)+\mathcal{C}\kappa_f\kappa_g\big)\log\frac{1}{\epsilon}\Big).$$

• When C = 0 (i.e., no compression) or $C \leq \frac{\kappa_f + \kappa_g}{\kappa_f \kappa_g + \kappa_f + \kappa_g}$, the iteration complexity is $\mathcal{O}\Big((\kappa_f + \kappa_g) \log \frac{1}{\epsilon}\Big).$

This recovers the convergence rate of NIDS [Li et al. '19].

• With C = 0 (or $C \le \frac{\kappa_f + \kappa_g}{\kappa_f \kappa_g + \kappa_f + \kappa_g}$) and fully connected communication graph (i.e., $\mathbf{W} = \frac{\mathbf{11}^\top}{n}$), the iteration complexity is $\mathcal{O}(\kappa_f \log \frac{1}{n})$.

This recovers the convergence rate of gradient descent [Nesterov '13].

イロト イヨト イヨト イヨト

$$\kappa_f = rac{L}{\mu}, \ \ \kappa_g = rac{\lambda_{\max}(\mathbf{I} - \mathbf{W})}{\lambda_{\min}^+(\mathbf{I} - \mathbf{W})}$$

- Complexity bounds when $\sigma = 0$
 - LEAD converges to the ϵ -accurate solution with the iteration complexity

$$\mathcal{O}\Big(\big((1+\mathcal{C})(\kappa_f+\kappa_g)+\mathcal{C}\kappa_f\kappa_g\big)\log\frac{1}{\epsilon}\Big).$$

• When C = 0 (i.e., no compression) or $C \leq \frac{\kappa_f + \kappa_g}{\kappa_f \kappa_g + \kappa_f + \kappa_g}$, the iteration complexity is $\mathcal{O}\Big((\kappa_f + \kappa_g) \log \frac{1}{\epsilon}\Big).$

This recovers the convergence rate of NIDS [Li et al. '19].

• With C = 0 (or $C \le \frac{\kappa_f + \kappa_g}{\kappa_f \kappa_g + \kappa_f + \kappa_g}$) and fully connected communication graph (i.e., $\mathbf{W} = \frac{\mathbf{11}^\top}{n}$), the iteration complexity is $\mathcal{O}(\kappa_f \log \frac{1}{n})$.

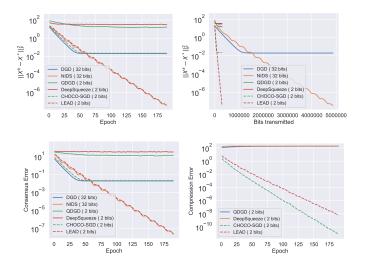
This recovers the convergence rate of gradient descent [Nesterov '13].

- Complexity bounds when $\sigma > 0$
 - Sublinear rate

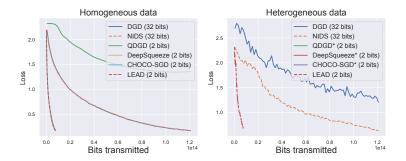
$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left\|\mathbf{x}_{i}^{k}-\mathbf{x}^{*}\right\|^{2}\lesssim\mathcal{O}\left(\frac{1}{k}\right)$$

<□ト < 三ト < 三ト

LEAD: Experiment



Linear regression (full-gradient)



Stochastic optimization on deep learning (AlexNet trained on CIFAR10; * means divergence)

LessBit

• Consider the equivalent min-max problem

$$\min_{\mathbf{X}\in\mathbb{R}^{n\times p}}\max_{\mathbf{S}\in\mathbb{R}^{n\times p}}\mathbf{F}(\mathbf{X})+\langle(\mathbf{I}-\mathbf{W})^{\frac{1}{2}}\mathbf{X},\mathbf{S}\rangle,\tag{7}$$

• Apply one step primal descent and one step dual ascent:

$$\begin{bmatrix} \mathbf{X}^{k+1} = \mathbf{X}^k - \eta \nabla \mathbf{F}(\mathbf{X}^k) - \eta \mathbf{D}^k, \\ \mathbf{D}^{k+1} = \mathbf{D}^k + \theta(\mathbf{I} - \mathbf{W})\mathbf{X}^{k+1}, \end{bmatrix}$$

where $\mathbf{D}^{k} = (\mathbf{I} - \mathbf{W})^{\frac{1}{2}} \mathbf{S}^{k}$. It is a special case of PDGM [Alghunaim-Sayed '20].

<ロト < 回 > < 臣 > < 臣 >

LessBit

• Consider the equivalent min-max problem

$$\min_{\mathbf{X}\in\mathbb{R}^{n\times p}}\max_{\mathbf{S}\in\mathbb{R}^{n\times p}}\mathbf{F}(\mathbf{X})+\langle(\mathbf{I}-\mathbf{W})^{\frac{1}{2}}\mathbf{X},\mathbf{S}\rangle,\tag{7}$$

• Apply one step primal descent and one step dual ascent:

$$\begin{bmatrix} \mathbf{X}^{k+1} = \mathbf{X}^k - \eta \nabla \mathbf{F}(\mathbf{X}^k) - \eta \mathbf{D}^k, \\ \mathbf{D}^{k+1} = \mathbf{D}^k + \theta(\mathbf{I} - \mathbf{W})\mathbf{X}^{k+1}, \end{bmatrix}$$

where $\mathbf{D}^{k} = (\mathbf{I} - \mathbf{W})^{\frac{1}{2}} \mathbf{S}^{k}$. It is a special case of PDGM [Alghunaim-Sayed '20].

• LessBit [Kovalev et al. '21] proposes a similar compression procedure as in LEAD [Liu et al. '21] and apply the compression on **X**^{k+1}:

$$\begin{split} \mathbf{X}^{k+1} &= \mathbf{X}^{k} - \eta \nabla \mathbf{F}(\mathbf{X}^{k}) - \eta \mathbf{D}^{k}, \\ \mathbf{\hat{X}}^{k+1} &= CompressionProcedure(\mathbf{X}^{k+1}) \\ \mathbf{D}^{k+1} &= \mathbf{D}^{k} + \theta(\mathbf{I} - \mathbf{W})\mathbf{\hat{X}}^{k+1} \end{split}$$

- It considers several gradient estimators: Dual gradient/GD/SGD/Loopless SVRG.
- Convergence complexity (full-gradient): $\mathcal{O}((C + \kappa_f \kappa_g + C \kappa_f \widetilde{\kappa_g}) \log \frac{1}{\epsilon})$

Prox-LEAD

• Prox-LEAD proposed in [Li et al. '21] considers the decentralized consensus composite problem with regularizer:

$$\mathbf{X}^{*} = \underset{\mathbf{X} \in \mathbb{R}^{n \times p}}{\operatorname{arg\,min}} \underbrace{\sum_{i=1}^{n} f_{i}(\mathbf{x}_{i})}_{=:\mathbf{F}(\mathbf{X})} + \underbrace{\sum_{i=1}^{n} r(\mathbf{x}_{i})}_{=:\mathbf{R}(\mathbf{X})}, \quad \text{s.t. } (\mathbf{I} - \mathbf{W})^{\frac{1}{2}} \mathbf{X} = \mathbf{0},$$
(8)

• The equivalent min-max problem:

$$\min_{\mathbf{X}\in\mathbb{R}^{n\times p}}\max_{\mathbf{S}\in\mathbb{R}^{n\times p}} \mathbf{F}(\mathbf{X}) + \langle (\mathbf{I}-\mathbf{W})^{\frac{1}{2}}\mathbf{X}, \mathbf{S} \rangle + \mathbf{R}(\mathbf{X}).$$
(9)

Prox-LEAD

• Prox-LEAD proposed in [Li et al. '21] considers the decentralized consensus composite problem with regularizer:

$$\mathbf{X}^{*} = \underset{\mathbf{X} \in \mathbb{R}^{n \times p}}{\operatorname{arg\,min}} \underbrace{\sum_{i=1}^{n} f_{i}(\mathbf{x}_{i})}_{=:\mathbf{F}(\mathbf{X})} + \underbrace{\sum_{i=1}^{n} r(\mathbf{x}_{i})}_{=:\mathbf{R}(\mathbf{X})}, \quad \text{s.t. } (\mathbf{I} - \mathbf{W})^{\frac{1}{2}} \mathbf{X} = \mathbf{0},$$
(8)

• The equivalent min-max problem:

$$\min_{\mathbf{X}\in\mathbb{R}^{n\times p}}\max_{\mathbf{S}\in\mathbb{R}^{n\times p}}\mathbf{F}(\mathbf{X})+\langle (\mathbf{I}-\mathbf{W})^{\frac{1}{2}}\mathbf{X},\mathbf{S}\rangle+\mathbf{R}(\mathbf{X}). \tag{9}$$

• We adapt the inexact PDHG with an additional proximal gradient step:

$$\mathbf{Y}^{k+1} = \mathbf{X}^{k} - \eta \nabla \mathbf{F}(\mathbf{X}^{k}) - \eta \mathbf{D}^{k},$$

$$\mathbf{D}^{k+1} = \mathbf{D}^{k} + \frac{\lambda}{2} (\mathbf{I} - \mathbf{W}) \mathbf{Y}^{k+1},$$

$$\mathbf{V}^{k+1} = \mathbf{X}^{k} - \eta \nabla \mathbf{F}(\mathbf{X}^{k}) - \eta \mathbf{D}^{k+1} = \left(\mathbf{I} - \frac{\eta \lambda}{2} (\mathbf{I} - \mathbf{W})\right) \mathbf{Y}^{k+1},$$

$$\mathbf{X}^{k+1} = \mathbf{prox}_{\eta \mathbf{R}} (\mathbf{V}^{k+1}).$$
(10)

where

$$\mathsf{prox}_{\eta \mathsf{R}}(\mathsf{X}) = \operatorname*{arg\,min}_{\mathsf{Y} \in \mathbb{R}^{n \times p}} \mathsf{R}(\mathsf{Y}) + \frac{1}{2\eta} \|\mathsf{Y} - \mathsf{X}\|^{2}.$$

IJCAI 2021

82 /

• We apply the compression procedure on \mathbf{Y}^{k+1} :

$$\begin{aligned} \mathbf{Y}^{k+1} &= \mathbf{X}^{k} - \eta \nabla \mathbf{F}(\mathbf{X}^{k}) - \eta \mathbf{D}^{k}, \\ \hat{\mathbf{Y}}^{k+1} &= CompressionProcedure(\mathbf{Y}^{k+1}), \\ \mathbf{D}^{k+1} &= \mathbf{D}^{k} + \frac{\lambda}{2}(\mathbf{I} - \mathbf{W})\hat{\mathbf{Y}}^{k+1}, \\ \mathbf{V}^{k+1} &= \left(\mathbf{I} - \frac{\eta\lambda}{2}(\mathbf{I} - \mathbf{W})\right)\hat{\mathbf{Y}}^{k+1}, \\ \mathbf{X}^{k+1} &= \mathbf{prox}_{\eta \mathbf{R}}(\mathbf{V}^{k+1}). \end{aligned}$$
(11)

Prox-LEAD

• Complexity with full-gradient:

 $\mathcal{O}\Big(\big((1+C)(\kappa_f+\kappa_g)+\sqrt{C}(1+C)\kappa_f\kappa_g\big)\log\frac{1}{\epsilon}\Big).$

Algorithm	R	$\nabla \mathbf{F}$	Comp.	Convergence complexity
Dual Gradient Descent	X	X	X	$\widetilde{\mathcal{O}}(\kappa_f\kappa_g)$
LessBit-Option A	x	×	1	$\widetilde{\mathcal{O}}(C+\kappa_f\kappa_g+C\kappa_f\widetilde{\kappa_g})$
Kovalev et al. (2021a)				
PDGM	x	1	×	$\widetilde{\mathcal{O}}(\kappa_f+\kappa_f\kappa_g)$
Alghunaim and Sayed (2020)				
LessBit-Option B	x	1	1	$\widetilde{\mathcal{O}}(C+\kappa_f\kappa_g+C\kappa_f\widetilde{\kappa_g})$
Kovalev et al. (2021a)	ſ,			
NIDS	x	1	×	$\widetilde{\mathcal{O}}(\kappa_f+\kappa_g)$
Li and Yan (2021)				
LEAD	×	1	1	$\widetilde{\mathcal{O}}((1+C)(\kappa_f+\kappa_g)+C\kappa_f\kappa_g)$
Liu et al. (2021)				$\mathcal{O}((1+\mathcal{O})(\kappa_f + \kappa_g) + \mathcal{O}\kappa_f \kappa_g)$
PUDA	1	1	×	$\widetilde{\mathcal{O}}(\kappa_f+\kappa_g)$
Alghunaim et al. (2020)				$\mathcal{O}(\kappa_f + \kappa_g)$
Prox-LEAD	1	1	1	$\widetilde{\mathcal{O}}((1+C)(\kappa_f + \kappa_g) + \sqrt{C}(1+C)\kappa_f\kappa_g)$
this paper, Algorithm 1	v			

Convergence complexity comparison

 $(\tilde{\mathcal{O}} \text{ hides the factor } \log \frac{1}{\epsilon})$

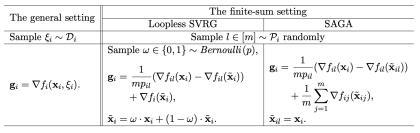
Prox-LEAD

- Complexity with stochastic-gradient:
 - The general stochastic setting:

$$f_i(\mathbf{x}_i) = \mathbb{E}_{\xi_i \sim \mathcal{D}_i} f_i(\mathbf{x}_i, \xi_i).$$

• The finite-sum setting:

$$f_i(\mathbf{x}_i) = \frac{1}{m} \sum_{j=1}^m f_{ij}(\mathbf{x}_i).$$



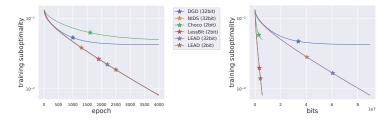
Stochastic gradient oracle (SGO)

・ロト ・ 四ト ・ ヨト ・ ヨト

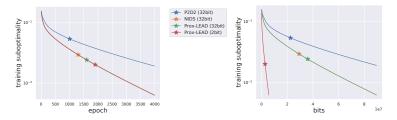
Algorithm	$lpha,\eta,\gamma$	Convergence complexity
Prox-LEAD-GD	fixed	$\widetilde{\mathcal{O}}((1+C)(\kappa_f+\kappa_g)+\sqrt{C}(1+C)\kappa_f\kappa_g)$
Prox-LEAD-SGD	$\mathcal{O}(rac{1}{k})$	$\mathcal{O}\Big(\big((1+C)^2\kappa_f\kappa_g + \frac{\sigma^2}{L^2}(1+C)^4\kappa_f^2\kappa_g^2\big)\frac{1}{\epsilon}\Big)$
Prox-LEAD-LSVRG	fixed	$\widetilde{\mathcal{O}}((1+C)(\kappa_f+\kappa_g)+\sqrt{C}(1+C)\kappa_f\kappa_g+p^{-1})$
Prox-LEAD-SAGA	fixed	$\widetilde{\mathcal{O}}((1+C)(\kappa_f+\kappa_g)+\sqrt{C}(1+C)\kappa_f\kappa_g+m)$

Summary of the convergence complexities for Prox-LEAD $(\widetilde{\mathcal{O}} \text{ hides the factor } \log \frac{1}{\epsilon})$

Prox-LEAD: Experiment

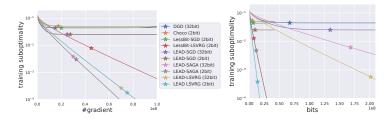


 ℓ_2 regularizer with full gradient

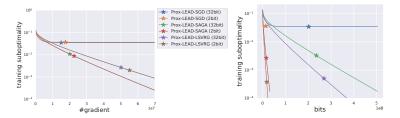


 $\ell_2 + \ell_1$ regularizer with full gradient

Prox-LEAD: Experiment



 ℓ_2 regularizer with stochastic gradient



 $\ell_2 + \ell_1$ regularizer with stochastic gradient

Gradient Tracking with Compression

• Gradient tracking (Aug-DGM) [Xu et al. '15]:

$$\begin{aligned} \mathbf{X}^{k+1} &= \mathbf{W}\mathbf{X}^{k} - \eta\mathbf{Y}^{k} \\ \mathbf{Y}^{k+1} &= \mathbf{W}\mathbf{Y}^{k} + \nabla\mathbf{F}(\mathbf{X}^{k+1}) - \nabla\mathbf{F}(\mathbf{X}^{k}) \end{aligned}$$

• A relaxed form:

$$\begin{aligned} \mathbf{X}^{k+1} &= \mathbf{X}^k - \gamma (\mathbf{I} - \mathbf{W}) \mathbf{X}^k - \eta \mathbf{Y}^k \\ \mathbf{Y}^{k+1} &= \mathbf{Y}^k - \gamma (\mathbf{I} - \mathbf{W}) \mathbf{Y}^k + \nabla \mathbf{F} (\mathbf{X}^{k+1}) - \nabla \mathbf{F} (\mathbf{X}^k) \end{aligned}$$

イロト イロト イヨト イヨト

Gradient Tracking with Compression

• Gradient tracking (Aug-DGM) [Xu et al. '15]:

$$\mathbf{X}^{k+1} = \mathbf{W}\mathbf{X}^{k} - \eta\mathbf{Y}^{k}$$
$$\mathbf{Y}^{k+1} = \mathbf{W}\mathbf{Y}^{k} + \nabla\mathbf{F}(\mathbf{X}^{k+1}) - \nabla\mathbf{F}(\mathbf{X}^{k})$$

• A relaxed form:

$$\begin{aligned} \mathbf{X}^{k+1} &= \mathbf{X}^k - \gamma (\mathbf{I} - \mathbf{W}) \mathbf{X}^k - \eta \mathbf{Y}^k \\ \mathbf{Y}^{k+1} &= \mathbf{Y}^k - \gamma (\mathbf{I} - \mathbf{W}) \mathbf{Y}^k + \nabla \mathbf{F} (\mathbf{X}^{k+1}) - \nabla \mathbf{F} (\mathbf{X}^k) \end{aligned}$$

• A compressed gradient tracking algorithm (C-GT) [Liao et al. '21]:

$$\begin{split} \hat{\mathbf{X}}^{k} &= CompressionProcedure(\mathbf{X}^{k})\\ \hat{\mathbf{Y}}^{k} &= CompressionProcedure(\mathbf{Y}^{k})\\ \mathbf{X}^{k+1} &= \mathbf{X}^{k} - \gamma(\mathbf{I} - \mathbf{W})\hat{\mathbf{X}}^{k} - \eta \mathbf{Y}^{k}\\ \mathbf{Y}^{k+1} &= \mathbf{Y}^{k} - \gamma(\mathbf{I} - \mathbf{W})\hat{\mathbf{Y}}^{k} + \nabla \mathbf{F}(\mathbf{X}^{k+1}) - \nabla \mathbf{F}(\mathbf{X}^{k}) \end{split}$$

- Drawbacks: 1) linear convergence rate is worse than LEAD; 2) it requires double communication cost
- Advantage: it is easier to extend to more general network assumption, such as directed networks (Compressed Push-Pull (CPP) [Song et al. '21]) and dynamic networks.

Introduction

2 Centralized Learning and Communication Compression

- Compression Operators
- Centralized Learning with Compression

3 Decentralized Optimization

- Decentralization
- Consensus Problem
- Decentralized Algorithms
- A Unified Framework for Decentralized Problem

4 Decentralized Learning with Compression

- DGD-type Algorithms with Compression
- Primal-Dual Algorithms with Compression
- Gradient-Tracking Algorithms with Compression

5 Summary and Future Direction

イロト イボト イヨト イヨ

Conclusion

- Summary Covered by this talk:
 - Communication bottleneck in distributed machine learning
 - Compression operators for communication compression
 - Improved techniques: difference compression & error compensation
 - Centralized algorithms with compression
 - Decentralized algorithms
 - · Decentralized algorithms with compression

Not covered:

- Asynchronized algorithms
- Periodic update in local SGD
- Device sampling in federated learning
- Future Direction
 - Theoretical analysis under weaker assumptions
 - Acceleration
 - Asynchronization
 - Device sampling
 - Periodic communication
 - Directed and dynamic networks
 - Compressed counterparts

イロト イボト イヨト イヨト

Tutorial website: https://lxiaorui.github.io/distopt/

Xiaorui Liu

Yao Li

Ming Yan

Jiliang Tang

Thanks for the funding supports from National Science Founding (NSF), Army Research Office (ARO) and Facebook Faculty Research Award.

facebook research

イロト イロト イヨト イヨ

Sulaiman A Alghunaim and Ali H Sayed.

Linear convergence of primal-dual gradient methods and their performance in distributed optimization.

Automatica, 117:109003, 2020.

Sulaiman A Alghunaim, Ernest K Ryu, Kun Yuan, and Ali H Sayed. Decentralized proximal gradient algorithms with linear convergence rates. *IEEE Transactions on Automatic Control*, 66(6):2787–2794, 2020.

Paolo Di Lorenzo and Gesualdo Scutari.
Next: In-network nonconvex optimization. *IEEE Transactions on Signal and Information Processing over Networks*, 2(2): 120–136, 2016.

John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed optimization: Convergence analysis and network scaling.

IEEE Transactions on Automatic control, 57(3):592–606, 2011.

Bahman Gharesifard and Jorge Cortés.

Distributed continuous-time convex optimization on weight-balanced digraphs. *IEEE Transactions on Automatic Control*, 59(3):781–786, 2013.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Urban Stich, and Martin Jaggi.

Error feedback fixes SignSGD and other gradient compression schemes.

In *Proceedings of the 36th International Conference on Machine Learning*, pages 3252–3261. PMLR, 2019.

Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi.

Decentralized stochastic optimization and gossip algorithms with compressed communication.

In Proceedings of the 36th International Conference on Machine Learning, pages 3479–3487. PMLR, 2019.

Dmitry Kovalev, Anastasia Koloskova, Martin Jaggi, Peter Richtarik, and Sebastian Stich.

A linearly convergent algorithm for decentralized optimization: Sending less bits for free!

In Arindam Banerjee and Kenji Fukumizu, editors, *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130 of *Proceedings of Machine Learning Research*, pages 4087–4095. PMLR, 13–15 Apr 2021.

URL http://proceedings.mlr.press/v130/kovalev21a.html.

Guanghui Lan, Soomin Lee, and Yi Zhou.

Communication-efficient algorithms for decentralized and stochastic optimization. *Mathematical Programming*, 180(1):237–284, 2020.

Yao Li and Ming Yan.

On the linear convergence of two decentralized algorithms. Journal of Optimization Theory and Applications, 189(1):271–290, 2021.

Yao Li, Xiaorui Liu, Jiliang Tang, Ming Yan, and Kun Yuan. Decentralized composite optimization with compression, 2021.

Zhi Li, Wei Shi, and Ming Yan.

A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates.

IEEE Transactions on Signal Processing, 67(17):4494–4506, 2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent.

In Advances in Neural Information Processing Systems, pages 5330–5340, 2017.

Yiwei Liao, Zhuorui Li, Kun Huang, and Shi Pu. Compressed gradient tracking methods for decentralized optimization with linear convergence, 2021.

Qing Ling, Wei Shi, Gang Wu, and Alejandro Ribeiro. Dlm: Decentralized linearized alternating direction method of multipliers. *IEEE Transactions on Signal Processing*, 63(15):4051–4064, 2015.

イロト イボト イヨト イヨ

A double residual compression algorithm for efficient distributed learning. The 23rd International Conference on Artificial Intelligence and Statistics, 2020.

 Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, and Ming Yan. Linear convergent decentralized optimization with compression. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=84gjULz1t5.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with compressed gradient differences. *arXiv preprint arXiv:1901.09269*, 2019.

Angelia Nedić and Alex Olshevsky.

Stochastic gradient-push for strongly convex functions on time-varying directed graphs.

IEEE Transactions on Automatic Control, 61(12):3936–3947, 2016.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization. *IEEE Transactions on Automatic Control*, 54(1):48–61, 2009.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed optimization over time-varying graphs.

SIAM Journal on Optimization, 27(4):2597–2633, 2017.

イロト イロト イヨト イヨト

Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network topology and communication-computation tradeoffs in decentralized optimization.

Proceedings of the IEEE, 106(5):953-976, 2018.

Yurii Nesterov.

Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business Media, 2013.

Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedić. Push-pull gradient methods for distributed optimization in networks. *IEEE Transactions on Automatic Control*, 66(1):1–16, 2020.

Guannan Qu and Na Li.

Harnessing smoothness to accelerate distributed optimization. IEEE Transactions on Control of Network Systems, 5(3):1245–1260, 2017.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, and Ramtin Pedarsani. An exact quantized decentralized gradient descent algorithm. *IEEE Transactions on Signal Processing*, 67(19):4934–4947, 2019a.

 Amirhossein Reisizadeh, Hossein Taheri, Aryan Mokhtari, Hamed Hassani, and Ramtin Pedarsani.
 Robust and communication-efficient collaborative learning.

In Advances in Neural Information Processing Systems, pages 8388-8399, 2019b.

< ロ > < 回 > < 回 > < 三 > < </p>

Gesualdo Scutari and Ying Sun.

Distributed nonconvex constrained optimization over time-varying digraphs. *Mathematical Programming*, 176(1):497–544, 2019.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and application to data-parallel distributed training of speech DNNs.

In Interspeech 2014, September 2014.

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear convergence of the admm in decentralized consensus optimization. *IEEE Transactions on Signal Processing*, 62(7):1750–1761, 2014.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan. Compressed gradient tracking for decentralized optimization over general directed networks, 2021.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory.

In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pages 4452–4463, 2018.

イロト イロト イヨト イヨト

Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression for decentralized training. In Advances in Neural Information Processing Systems, pages 7652–7662. 2018.

Hanlin Tang, Xiangru Lian, Shuang Qiu, Lei Yuan, Ce Zhang, Tong Zhang, and Ji Liu.

Deepsqueeze: Decentralization meets error-compensated compression.

CoRR, abs/1907.07346, 2019.

URL http://arxiv.org/abs/1907.07346.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized SGD and its applications to large-scale distributed optimization.

In *Proceedings of the 35th International Conference on Machine Learning*, pages 5325–5333, 2018.

Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters, 53(1):65–78, 2004.

Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed gradient methods for multi-agent optimization under uncoordinated constant stepsizes.

In 2015 54th IEEE Conference on Decision and Control (CDC), pages 2055–2060. IEEE, 2015. Kun Yuan, Qing Ling, and Wotao Yin.
 On the convergence of decentralized gradient descent.
 SIAM Journal on Optimization, 26(3):1835–1854, 2016.

Mingqiang Zhu and Tony Chan.

An efficient primal-dual hybrid gradient algorithm for total variation image restoration.

UCLA CAM Report, 34:8-34, 2008.

Image: A math a math