
Communication Efficient Distributed Learning
An half-day tutorial held in IJCAI 2021

Xiaorui Liu1, Yao Li2,3, Ming Yan3,2, and Jiliang Tang1

Website: https://lxiaorui.github.io/distopt/

1 Department of Computer Science and Engineering
2 Department of Mathematics

3 Department of Computational Mathematics, Science and Engineering
Michigan State University

IJCAI Montreal, Aug. 20th, 2021

Distributed Learning IJCAI 2021 1 / 92

https://lxiaorui.github.io/distopt/

Outline

1 Introduction

2 Centralized Learning and Communication Compression
Compression Operators
Centralized Learning with Compression

3 Decentralized Optimization
Decentralization
Consensus Problem
Decentralized Algorithms
A Unified Framework for Decentralized Problem

4 Decentralized Learning with Compression
DGD-type Algorithms with Compression
Primal-Dual Algorithms with Compression
Gradient-Tracking Algorithms with Compression

5 Summary and Future Direction

Distributed Learning IJCAI 2021 2 / 92

Table of Contents

1 Introduction

2 Centralized Learning and Communication Compression
Compression Operators
Centralized Learning with Compression

3 Decentralized Optimization
Decentralization
Consensus Problem
Decentralized Algorithms
A Unified Framework for Decentralized Problem

4 Decentralized Learning with Compression
DGD-type Algorithms with Compression
Primal-Dual Algorithms with Compression
Gradient-Tracking Algorithms with Compression

5 Summary and Future Direction

Distributed Learning IJCAI 2021 3 / 92

Machine Learning on Big Data

Distributed Learning IJCAI 2021 4 / 92

Image Recognition

Deep Residual Network

Distributed Learning IJCAI 2021 5 / 92

Language Model

A multi-layer bidirectional Transformer

Language modeling

Reading comprehension

Machine translation

News article generation

Question answering

Grammar correction

Distributed Learning IJCAI 2021 6 / 92

Distributed Learning

Large-scale learning problems: (big data + big model)

minimize
x∈Rp

f (x) + R(x) =
1

n

n∑
i=1

Eξ∼Di [`i (x, ξ)]︸ ︷︷ ︸
:=fi (x)

+R(x).

Distributed computing for processing massive data and big models

Distributed Learning IJCAI 2021 7 / 92

Parallel SGD

f(x)

Sensors 2017, 17, 2172 4 of 17

Figure 1. The first-generation parameter server system

The model uses a distributed Memcached to store the parameters, where each worker node only
retains part of the parameters which are required in computing, and they can synchronize global
model parameters with each other in this model. However, this parameter server is only a prototype
design, the communication overhead is not optimized, and it is not suitable for distributed machine
learning.

Industry has done a lot of work in improving the Parameter Server System. Dean et al. proposed
a second-generation parameter server system in 2012, and developed a deep learning system called
DistBelief [12] based on the Parameter Server System. As shown in Figure 2, the system sets up a
global parameter server. The deep learning model is distributed stored on worker nodes, the
communication between worker nodes is not allowed, and the PS is responsible for the transfer of all
parameters. The second-generation parameter server system can solve the problem that the machine
learning algorithms are very difficult to be distributed, but because it does not consider the
performance differences of each worker node, the utilization of each worker node in the distributed
system is still not high.

Figure 2. The second-generation parameter server system

Li proposed a third-generation parameter server system in 2014 [30,31]. As shown in Figure 3,
the Parameter Server System provides a more general design, including a parameter server group
and multiple worker nodes.

Training
data

Worker
group

Server
group

A worker
node

Task
schedule

r

Resource
manager

Server
manager

A server
node

x

Parameter server/master node

Duplicated
models

Data
shards

Parallel SGD coordinated by the parameter server

Time cost per iteration: gradient computation + communication + model update

Distributed Learning IJCAI 2021 8 / 92

Parallel SGD

Communication time = latency + model size
network bandwidth

Image credit: Dan Alistarh

Ideally, communication is fast if model is small and bandwidth is large.

Distributed Learning IJCAI 2021 9 / 92

Parallel SGD

Communication time = latency + model size
network bandwidth

Image credit: Dan Alistarh

Practically, communication is slow if model is large and bandwidth is limited.

Distributed Learning IJCAI 2021 10 / 92

Scalability

Image credit: Dan Alistarh

When the number of nodes increases, the communication becomes even slower.

The speedup becomes worse and we loose the benefit of distributed learning.

Distributed Learning IJCAI 2021 11 / 92

Communication Efficiency

Can we design communication efficient algorithms to overcome the
communication bottleneck for a better speedup and scalability?

Distributed Learning IJCAI 2021 12 / 92

Communication Compression

Compressing the synchronization information into low-bit representations

Distributed Learning IJCAI 2021 13 / 92

Decentralized Communication

Supporting general network topology by neighboring communication

Distributed Learning IJCAI 2021 14 / 92

Decentralization + Compression

Compressing the local communication between connected machines

Distributed Learning IJCAI 2021 15 / 92

Table of Contents

1 Introduction

2 Centralized Learning and Communication Compression
Compression Operators
Centralized Learning with Compression

3 Decentralized Optimization
Decentralization
Consensus Problem
Decentralized Algorithms
A Unified Framework for Decentralized Problem

4 Decentralized Learning with Compression
DGD-type Algorithms with Compression
Primal-Dual Algorithms with Compression
Gradient-Tracking Algorithms with Compression

5 Summary and Future Direction

Distributed Learning IJCAI 2021 16 / 92

Optimization Problem

Optimization problem

minimize
x∈Rp

f(x)+r(x) =
1

n

n∑
i=1

Eξ∼Di [fi (x, ξ)]︸ ︷︷ ︸
:=fi (x)

+r(x).

We mainly focus on the case r(x) = 0 in this section.
The function fi (·, ξ) is differentiable.
Examples: empirical risk minimization in statistical machine learning

Two ways to measure the convergence of an optimization algorithm
How many iterations do we need to achieve some optimality precision ε?
What is the optimality precision ε can we achieve after K iteration?

Distributed Learning IJCAI 2021 17 / 92

Function Properties

Convex: for α ∈ (0, 1)

f (αx + (1− α)y)) ≤ αf (x) + (1− α)f (y)

(µ-strongly) convex and differential: for any y

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖y − x‖2

L-smooth:

f (y) ≤ f (x) + 〈∇f (x), y − x〉+
L

2
‖y − x‖2

Proximal operator:

proxηr (x) = arg min
y

ηr(y) +
1

2
‖y − x‖2

Distributed Learning IJCAI 2021 18 / 92

Centralized Learning

xk+1 = xk − η∇f(xk) = xk − η

n

n∑
i=1

∇fi (xk)

f(x)

Sensors 2017, 17, 2172 4 of 17

Figure 1. The first-generation parameter server system

The model uses a distributed Memcached to store the parameters, where each worker node only
retains part of the parameters which are required in computing, and they can synchronize global
model parameters with each other in this model. However, this parameter server is only a prototype
design, the communication overhead is not optimized, and it is not suitable for distributed machine
learning.

Industry has done a lot of work in improving the Parameter Server System. Dean et al. proposed
a second-generation parameter server system in 2012, and developed a deep learning system called
DistBelief [12] based on the Parameter Server System. As shown in Figure 2, the system sets up a
global parameter server. The deep learning model is distributed stored on worker nodes, the
communication between worker nodes is not allowed, and the PS is responsible for the transfer of all
parameters. The second-generation parameter server system can solve the problem that the machine
learning algorithms are very difficult to be distributed, but because it does not consider the
performance differences of each worker node, the utilization of each worker node in the distributed
system is still not high.

Figure 2. The second-generation parameter server system

Li proposed a third-generation parameter server system in 2014 [30,31]. As shown in Figure 3,
the Parameter Server System provides a more general design, including a parameter server group
and multiple worker nodes.

Training
data

Worker
group

Server
group

A worker
node

Task
schedule

r

Resource
manager

Server
manager

A server
node

x

Parameter server/master node

Duplicated
models

Data
shards

Data is partitioned at different nodes.

Each worker node sends the gradient to the master node.

The master node updates the model x and sends to the worker nodes.

Distributed Learning IJCAI 2021 19 / 92

Communication Compression

Reduce the number of bits in communication

Examples: 1Bit SGD, QSGD, Terngrad, signSGD, ECQ-SGD, DIANA, MEM-SGD,
DoubleSqueeze, DORE, etc.

Distributed Learning IJCAI 2021 20 / 92

Compression Operator: Property

Define Q(x) as the compressed version of x, and it can be encoded with fewer bits

Q(x) can be deterministic or stochastic

Q(x) can be biased (EQ(x) = x) or unbiased (EQ(x) 6= x)

C -contracted operator:
E‖x− Q(x)‖2 ≤ C‖x‖2

C controls the compression error.

Distributed Learning IJCAI 2021 21 / 92

Compression Operator: Example

No compression: C = 0

Top-K sparsification: select top K elements according to the magnitudes (biased,
C < 1)

Rand-K sparsification: randomly select K elements and rescale it (unbiased, C < 1)

p-norm b-bit quantization: (unbiased, C > 0)

Q∞(x) :=
(
‖x‖p2−(b−1)sign(x)

)
·
⌊

2(b−1)|x|
‖x‖p

+ u

⌋
(1)

Example: [1.2,−0.1]⇒ ([1, 0], ‖[1.2,−0.1‖p)
It can also be done separately in each data block to reduce compression
error [Mishchenko et al. ’19].

Others

Distributed Learning IJCAI 2021 22 / 92

Compression Operator: Empirical Comparison

Evaluated on 100 uniformly generated random vectors in R10000 [Liu et al. ’21]

Comparison of compression error
between different compression operators

Comparison of compression error
for p-norm b-bit quantization

Distributed Learning IJCAI 2021 23 / 92

Centralized Learning

Non-compressed version:

xk+1 = xk − η∇f(xk) = xk − η

n

n∑
i=1

∇fi (xk)

Compressed framework:

xk+1 = xk − η∇f(xk) = xk − η

n

n∑
i=1

gk
i ,

where gk
i is an approximation of ∇fi (xk).

Distributed Learning IJCAI 2021 24 / 92

Compression Technique: Direct Compression (Q-SGD)

xk+1 = xk − η

n

n∑
i=1

Q(∇fi (xk))

Assume that all nodes have the true solution x∗. Then one step of parallel (exact)
gradient descent with compression will leave x∗ in general.

That is

x = x∗ − η

n

n∑
i=1

Q(∇fi (x∗))

= x∗ − η

n

n∑
i=1

∇fi (x∗) +
η

n

n∑
i=1

(∇fi (x∗)− Q(∇fi (x∗))).

The only ways to have x = x∗ are that the sum of the compression error is 0 or
η = 0.

Distributed Learning IJCAI 2021 25 / 92

Compression Technique: Direct Compression (Q-SGD)

xk+1 = xk − η

n

n∑
i=1

Q(∇fi (xk))

Assume that all nodes have the true solution x∗. Then one step of parallel (exact)
gradient descent with compression will leave x∗ in general.

That is

x = x∗ − η

n

n∑
i=1

Q(∇fi (x∗))

= x∗ − η

n

n∑
i=1

∇fi (x∗) +
η

n

n∑
i=1

(∇fi (x∗)− Q(∇fi (x∗))).

The only ways to have x = x∗ are that the sum of the compression error is 0 or
η = 0.

Distributed Learning IJCAI 2021 25 / 92

Compression Technique: Error Compensation (EF-SGD)

xk+1 = xk − η

n

n∑
i=1

Q(∇fi (xk) + ek−1
i)

ek
i = ∇fi (xk) + ek−1

i − Q(∇fi (xk) + ek−1
i)

Main idea: add the compression error to the next variable to be compressed
[Seide et al. ’14, Wu et al. ’18, Stich et al. ’18, Karimireddy et al. ’19]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

Q(∇fi (x∗) + ei)

= x∗ − η

n

n∑
i=1

∇fi (x∗)

+
η

n

n∑
i=1

(∇fi (x∗) + ei − Q(∇fi (x∗) + ei))− η

n

n∑
i=1

ei .

The only ways to have x = x∗ are that the sum of the compression error does not
change or η = 0.
It convergences with a diminishing stepsize also, and it requires the boundedness of
the stochastic gradient.

Distributed Learning IJCAI 2021 26 / 92

Compression Technique: Error Compensation (EF-SGD)

xk+1 = xk − η

n

n∑
i=1

Q(∇fi (xk) + ek−1
i)

ek
i = ∇fi (xk) + ek−1

i − Q(∇fi (xk) + ek−1
i)

Main idea: add the compression error to the next variable to be compressed
[Seide et al. ’14, Wu et al. ’18, Stich et al. ’18, Karimireddy et al. ’19]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

Q(∇fi (x∗) + ei)

= x∗ − η

n

n∑
i=1

∇fi (x∗)

+
η

n

n∑
i=1

(∇fi (x∗) + ei − Q(∇fi (x∗) + ei))− η

n

n∑
i=1

ei .

The only ways to have x = x∗ are that the sum of the compression error does not
change or η = 0.

It convergences with a diminishing stepsize also, and it requires the boundedness of
the stochastic gradient.

Distributed Learning IJCAI 2021 26 / 92

Compression Technique: Error Compensation (EF-SGD)

xk+1 = xk − η

n

n∑
i=1

Q(∇fi (xk) + ek−1
i)

ek
i = ∇fi (xk) + ek−1

i − Q(∇fi (xk) + ek−1
i)

Main idea: add the compression error to the next variable to be compressed
[Seide et al. ’14, Wu et al. ’18, Stich et al. ’18, Karimireddy et al. ’19]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

Q(∇fi (x∗) + ei)

= x∗ − η

n

n∑
i=1

∇fi (x∗)

+
η

n

n∑
i=1

(∇fi (x∗) + ei − Q(∇fi (x∗) + ei))− η

n

n∑
i=1

ei .

The only ways to have x = x∗ are that the sum of the compression error does not
change or η = 0.
It convergences with a diminishing stepsize also, and it requires the boundedness of
the stochastic gradient.

Distributed Learning IJCAI 2021 26 / 92

Compression Technique: Difference Compression (DIANA)

xk+1 = xk − η

n

n∑
i=1

hk
i + Q(∇fi (xk)− hk

i)

Main idea: quantize the difference between the gradient and an
estimation [Mishchenko et al. ’19, Liu et al. ’20]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

hi + Q(∇fi (x∗)− hi)

= x∗ − η

n

n∑
i=1

∇fi (x∗) +
η

n

n∑
i=1

(∇fi (x∗)− hi − Q(∇fi (x∗)− hi))

For a positive η, if we can have hi = ∇fi (x∗), then we have x = x∗.

Question: How to update hi?

hk+1
i = hk

i + αQ(∇fi (xk)− hk
i)

Distributed Learning IJCAI 2021 27 / 92

Compression Technique: Difference Compression (DIANA)

xk+1 = xk − η

n

n∑
i=1

hk
i + Q(∇fi (xk)− hk

i)

Main idea: quantize the difference between the gradient and an
estimation [Mishchenko et al. ’19, Liu et al. ’20]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

hi + Q(∇fi (x∗)− hi)

= x∗ − η

n

n∑
i=1

∇fi (x∗) +
η

n

n∑
i=1

(∇fi (x∗)− hi − Q(∇fi (x∗)− hi))

For a positive η, if we can have hi = ∇fi (x∗), then we have x = x∗.

Question: How to update hi?

hk+1
i = hk

i + αQ(∇fi (xk)− hk
i)

Distributed Learning IJCAI 2021 27 / 92

Compression Technique: Difference Compression (DIANA)

xk+1 = xk − η

n

n∑
i=1

hk
i + Q(∇fi (xk)− hk

i)

Main idea: quantize the difference between the gradient and an
estimation [Mishchenko et al. ’19, Liu et al. ’20]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

hi + Q(∇fi (x∗)− hi)

= x∗ − η

n

n∑
i=1

∇fi (x∗) +
η

n

n∑
i=1

(∇fi (x∗)− hi − Q(∇fi (x∗)− hi))

For a positive η, if we can have hi = ∇fi (x∗), then we have x = x∗.

Question: How to update hi?

hk+1
i = hk

i + αQ(∇fi (xk)− hk
i)

Distributed Learning IJCAI 2021 27 / 92

Compression Technique: Difference Compression (DIANA)

xk+1 = xk − η

n

n∑
i=1

hk
i + Q(∇fi (xk)− hk

i)

Main idea: quantize the difference between the gradient and an
estimation [Mishchenko et al. ’19, Liu et al. ’20]

Assume that all nodes have the true solution x∗. In general, we have.

x = x∗ − η

n

n∑
i=1

hi + Q(∇fi (x∗)− hi)

= x∗ − η

n

n∑
i=1

∇fi (x∗) +
η

n

n∑
i=1

(∇fi (x∗)− hi − Q(∇fi (x∗)− hi))

For a positive η, if we can have hi = ∇fi (x∗), then we have x = x∗.

Question: How to update hi?

hk+1
i = hk

i + αQ(∇fi (xk)− hk
i)

Distributed Learning IJCAI 2021 27 / 92

Comparison of Three Compression Techniques

Direct compression: large variance, works when the variance converges to zero

Error compensation: smaller variance compared to the direct compression, also
works when the variance converges to zero

Difference compression: the variance converges to zero.

Distributed Learning IJCAI 2021 28 / 92

DORE: Double Residual Compression

Input: Stepsize α, β, γ, η, initialize h0 = h0
i = 0d , x̂0

i = x̂0, ∀i ∈ {1, . . . , n}.
for k = 1, 2, · · · ,K − 1 do

For each worker {i = 1, 2, · · · , n}:
Gradient residual: ∆k

i = ∇fi (x̂k
i)− hk

i

Compression: ∆̂k
i = Q(∆k

i)
hk+1
i = hk

i + α∆̂k
i

Sent ∆̂k
i to the master

Receive q̂k from the master
x̂k+1
i = x̂k

i + βq̂k

For the master:

Receive ∆̂k
i s from workers

∆̂k = 1/n
∑n

i ∆̂k
i

ĝk = hk + ∆̂k

hk+1 = hk + α∆̂k{= 1
n

∑n
i=1 hk+1

i }
qk = −ηĝk + γek

Compression: q̂k = Q(qk)
ek+1 = qk − q̂k

Broadcast q̂k to workers

end for
Output: any x̂K

i

The worker nodes compress the residual.

The master node uses error compensation and broadcasts the compressed update
(which converges to 0).

Distributed Learning IJCAI 2021 29 / 92

Algorithm Comparison

Algorithm Compression Compress. Model Linear Nonconvex Rate
SGD No No X 1√

Kn
+ 1

K

QSGD Grad 2-norm N/A 1
K

+ B
MEM-SGD Grad k-contraction N/A N/A

DIANA Grad p-norm X 1√
Kn

+ 1
K

DoubleSqueeze Grad+Model Bdd Variance N/A 1√
Kn

+ 1

K2/3 + 1
K

DORE Grad+Model Assum. 1 X 1√
Kn

+ 1
K

Convergence complexity comparison

Distributed Learning IJCAI 2021 30 / 92

Linear Regression

0 2000 4000 6000 8000 10000
Iteration

10
14

10
11

10
8

10
5

10
2

10
1

||x
k

x
*|

|2

SGD
QSGD
MEM-SGD
DIANA
DoubleSqueeze
DoubleSqueeze (topk)
DORE

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10
9

10
7

10
5

10
3

10
1

10
1

||x
k

x
*|

|2

SGD
QSGD
MEM-SGD
DIANA
DoubleSqueeze
DoubleSqueeze (topk)
DORE

f (x) = ‖Ax− b‖2 + λ‖x‖2 with A ∈ R1200×500. The rows of A are allocated evenly
to 20 worker nodes. We take the exact gradient in each node to exclude the effect
of the gradient variance (i.e., σ = 0).
Left: γ = 0.05, Right: γ = 0.025.

Linear convergence: DORE, SGD, DIANA; Not converge: QSGD, MEM-SGD,
DoubleSqueeze (diverges in Left figure), DoubleSqueeze (topk)

Distributed Learning IJCAI 2021 31 / 92

Linear Regression: Data to be Compressed

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10
11

10
8

10
5

10
2

10
1

10
4

N
or

m

DoubleSqueeze
DoubleSqueeze (topk)
DORE

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

10
1

10
3

N
or

m

DoubleSqueeze
DoubleSqueeze (topk)
DORE

The norm of the variable to be compressed in all algorithms.
Left: the worker node; Right: the master node.

The norm of the variable decreases exponentially for DORE, while that of
DoubleSqueeze does not decrease after certain iterations.

Distributed Learning IJCAI 2021 32 / 92

LeNet on MINST

0 10 20 30 40 50 60 70
Epoch

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

SGD
QSGD
MEM-SGD
DIANA
DoubleSqueeze
DoubleSqueeze (topk)
DORE

0 10 20 30 40 50 60 70
Epoch

0.0

0.5

1.0

1.5

2.0

Te
st

 L
os

s

SGD
QSGD
MEM-SGD
DIANA
DoubleSqueeze
DoubleSqueeze (topk)
DORE

We use 1 parameter server and 10 worker nodes, each of which is equipped with an
NVIDIA Tesla K80 GPU. The batch size for each worker node is 256. Learning rate
is 0.1 and decreases by a factor of 0.1 after every 25 epochs.

Distributed Learning IJCAI 2021 33 / 92

Resnet18 Trained on CIFAR10

0 50 100 150 200 250
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ai

ni
ng

 L
os

s

SGD
QSGD
MEM-SGD
DIANA
DoubleSqueeze
DoubleSqueeze (topk)
DORE

0 50 100 150 200 250
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

 L
os

s

SGD
QSGD
MEM-SGD
DIANA
DoubleSqueeze
DoubleSqueeze (topk)
DORE

We use 1 parameter server and 10 worker nodes, each of which is equipped with an
NVIDIA Tesla K80 GPU. The batch size for each worker node is 256. Learning rate
is 0.01 and decreases by a factor of 0.1 after every 100 epochs.

Distributed Learning IJCAI 2021 34 / 92

Stochastic Algorithms

Stochastic gradient descent: replace ∇fi (xk) by a stochastic approximation gk
i . It is

unbiased Egk
i = ∇fi (xk) and has positive variance.

Variance reduction techniques: SVRG, SAGA, SARAH.

Momentum method: momentum SGD, STORM, ROOT-SGD, IGT.

For stochastic gradient without variance reduction, error compensation may be good
enough and the compression error will not converge to zero.

However, for stochastic with momentum, error compensation can not remove
previous errors.

Distributed Learning IJCAI 2021 35 / 92

Momentum SGD

Momentum update

vk = (1− αk)vk−1 + αkgk , xk+1 = xk − ηvk ,

where gk is an estimation of the gradient at xk .

αk gk

SGD 1 ∇fi (xk ; ξk)

Momentum SGD α ∇fi (xk ; ξk)

STORM α 1
αk

(
∇fi (xk ; ξk)− (1− αk)∇fi (xk−1; ξk)

)
ROOT-SGD 1/k 1

αk

(
∇fi (xk ; ξk)− (1− αk)∇fi (xk−1; ξk)

)
IGT α ∇fi

(
xk + 1−αk

αk
(xk − xk−1); ξk

)
Standard error compensation without momentum:

xk+1 = xk − ηQ(gk + ek−1), ek = gk + ek−1 − Q(gk + ek−1).

Distributed Learning IJCAI 2021 36 / 92

Error Accumulation (Let αk = α and v−1 = 0)

No compression:

xT = x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−sgs = x0 − η
T−1∑
t=0

t−1∑
s=0

α(1− α)t−sgs − αη
T−1∑
t=0

gt

Simple compression on g:

xT = x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−s(gs − es)

= x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−sgs + η

T−2∑
s=0

(1− (1− α)T−s)es + ηαeT−1

Error compensation (e−1 = 0):

xT = x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−s(gs + es−1 − es)

= x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−sgs + η

T−2∑
s=0

α(1− α)T−1−ses + ηαeT−1

When α = 1 (no momentum), the error is just ηeT−1. However, α is usually very small if
momentum is applied.

Distributed Learning IJCAI 2021 37 / 92

ErrorCompensatedX: Using the Previous Two Errors

ErrorCompensedX (e−1 = e−2 = 0):

xT = x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−s(gs + (1− α)(es−1 − es−2) + es−1 − es)

= x0 − η
T−1∑
t=0

t∑
s=0

α(1− α)t−sgs + ηαeT−1

The error does not accumulate!

Distributed Learning IJCAI 2021 38 / 92

Numerical Verification

Convergence speed comparison on linear regression for STORM and IGT with different
compression techniques.

The y -axis is the norm of the full gradient. The batch size equals 1, αk = 1/k, and we
use 1-bit compression.

Distributed Learning IJCAI 2021 39 / 92

Numerical Experiments

Epoch-wise convergence comparison on ResNet-50:
Training loss:

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

Momentum SGD
Momentum SGD (Single Compensation)
Momentum (ErrorCompensateX)

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

STORM
STORM (Single Compensation)
STORM (ErrorCompensateX)

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

IGT
IGT (Single Compensation)
IGT (ErrorCompensateX)

Test accuracy:

0 20 40 60 80 100
Epochs

60
65
70
75
80
85
90
95

100

Te
st

in
g

Ac
cu

ra
cy

Momentum SGD
Momentum SGD (Single Compensation)
Momentum (ErrorCompensateX)

0 20 40 60 80 100
Epochs

60
65
70
75
80
85
90
95

100

Te
st

in
g

Ac
cu

ra
cy

STORM
STORM (Single Compensation)
STORM (ErrorCompensateX)

0 20 40 60 80 100
Epochs

60
65
70
75
80
85
90
95

100

Te
st

in
g

Ac
cu

ra
cy

IGT
IGT (Single Compensation)
IGT (ErrorCompensateX)

Distributed Learning IJCAI 2021 40 / 92

Table of Contents

1 Introduction

2 Centralized Learning and Communication Compression
Compression Operators
Centralized Learning with Compression

3 Decentralized Optimization
Decentralization
Consensus Problem
Decentralized Algorithms
A Unified Framework for Decentralized Problem

4 Decentralized Learning with Compression
DGD-type Algorithms with Compression
Primal-Dual Algorithms with Compression
Gradient-Tracking Algorithms with Compression

5 Summary and Future Direction

Distributed Learning IJCAI 2021 41 / 92

Decentralized Averaging

Settings:
- A connected network with n agents, denoted as V = {1, 2, · · · , n}.
- Each agent i holds a local number (vector) ci privately.
- Agent i can exchange the number (vector) with agent j if and only if j is the
neighbour of i , denoted as j ∈ Ni .

Objective: Each agent obtains the averaged number (vector) c̄ = 1
n

∑n
i=1 ci .

1

10

2

3

45

6

7

8

9

c
10

c
5

c
3

c
2

c
6

c
8

c
9

c
7

c
1

c
4

Figure: Illustrative figure of the network.

Distributed Learning IJCAI 2021 42 / 92

Decentralized Averaging

Method: linear iterative averaging (gossip algorithm)
Assign each agent i an own model variable xi .
Initialize x0

i = ci .
Update the variable via

xk+1
i = wiix

k
i +

∑
j∈Ni

wijx
k
j

with given set of weights {wij : i , j ∈ V}.
Examples of weight set:

Metropolis weights, i.e., wij = 1
max{|Ni |,|Nj |}+1 if j ∈ Ni , wii = 1−

∑
j∈Ni

wij and wij = 0

otherwise.
Fastest distributed linear averaging in [Xiao-Boyd ’04].

Distributed Learning IJCAI 2021 43 / 92

Decentralized Averaging

1

10

2

3

4

5

6

7

8

9

1

10

2

3

45

6

7

8

9

1

10
2

3

4

5

6

7

8
9

Figure: Star graph, random graph and line graph with 10 agents

Consider the graph structure of the distributed system, G = (V, E) where E is the
set of connection relation among agents in V.

All agents form an undirected connected graph.

Edges characterize the connection among agents.

Distributed Learning IJCAI 2021 44 / 92

Decentralized Averaging

The problem is formulated as the minimization with constraint

minimize
x1,··· ,xn∈Rp

1

2

n∑
i=1

‖xi − ci‖2 s.t. x1 = x2 · · · = xn (2)

The linear iterative averaging is formulated as

Xk+1 = WXk

where X = [x1, x2, · · · , xn]> and W is the matrix with entries in {wij : i , j ∈ V}
By construction, W is symmetric and doubly stochastic, i.e., W1 = 1 and
1>W = 1>.

Let X∞ = c̄1 and Π = 1
n
11> (averaging matrix)

‖Xk+1 − X∞‖2 ≤ λ2
max(W − Π)‖Xk − X∞‖2

Each xki converges to c̄ linearly at the rate of λ2
max(W − Π)︸ ︷︷ ︸

=max{|λ2(W)|,|λn(W)|}

if ‖W − Π‖2 < 1.

Distributed Learning IJCAI 2021 45 / 92

Decentralized Consensus

W – mixing matrix (gossip matrix) defined over the undirected network G:
symmetric and W1 = 1.
‖W − Π‖2 < 1 ⇒ −1 < λn(W) ≤ · · · ≤ λ2(W) < λ1(W) = 1.

Decentralized consensus problem for averaging:

minimize
X∈Rn×p

f(X) :=
1

2

n∑
i=1

‖xi − ci‖2 s.t. (I−W)X = 0.

Consensus: WX = X iff x1 = x2 = · · · = xn.

The general decentralized consensus problem (DCP):

minimize
X∈Rn×p

f(X) :=
n∑

i=1

fi (xi) s.t. (I−W)X = 0

where fi (xi) is a differentiable convex function.

Distributed Learning IJCAI 2021 46 / 92

Decentralized Consensus

The general decentralized consensus composite problem (DCCP):

minimize
X∈Rn×p

f(X) + r(X) :=
n∑

i=1

fi (xi) +
n∑

i=1

ri (xi) s.t. (I−W)X = 0,

where ri (x) is a convex (possibly) non-smooth regularizer.

Consider the setting:
f is L-smooth and µ-strongly convex, i.e.,

µ

2
‖a− b‖2 ≤ fi (a)− fi (b)− 〈∇fi (b), a− b〉 ≤

L

2
‖a− b‖2, ∀a, b ∈ Rp .

ri (x) = rj (x) for i , j ∈ V (shared regularizer)
The proximal gradient mapping,

proxηri (x) = arg min
y∈Rp

ri (y) +
1

2η
‖y − x‖2.

Distributed Learning IJCAI 2021 47 / 92

Decentralized Gradient Descent

Decentralized Gradient Descent (DGD) in [Nedic-Ozdaglar ’09]
aims to solve DCP.
combine mixing step (communication procedure) with gradient descent.

Xk+1 = WXk−η∇f(Xk)

In agent i ’s perspective,xk+1
i = wiix

k
i +

∑
j∈Ni

wijx
k
j︸ ︷︷ ︸

mixing step

− η∇fi (xk
i)︸ ︷︷ ︸

gradient descent

Taking fixed stepsize η ∈ (0,min{ 1+λn(W)

L
, 1
L+µ
}] in [Yuan et al. ’16],

‖Xk − X∗‖ ≤ O(ρk) +O(η).

“Near” convergence: linear rate to the neighbourhood of x∗.
Diminishing stepsize for exact convergence.

Distributed Learning IJCAI 2021 48 / 92

Decentralized Gradient Descent

One explanatory view:
Reformulate the iteration of DGD as

Xk+1 = Xk− [(I−W)Xk + η∇f(Xk)]︸ ︷︷ ︸
gradient descent

Gradient descent with stepsize 1 for the different problem

minimize
X∈Rp×d

1

2
‖
√

I−WX‖2 + ηf(X)

The solution X† to this problem is generally non-consensus, i.e.,

WX† = X† + η∇f(X†) 6= X†.

η → 0, i.e., decreasing η in iterations, guarantees the consensus.

Distributed Learning IJCAI 2021 49 / 92

Decentralized Gradient Descent

Another explanatory view:
Recall DGD:

Xk+1 = WXk − η∇f(Xk)

The limit point X∞ :
(I−W)X∞ = −η∇f(X∞)

The consensus of X∞ ⇔ ∇f(X∞) = 0.
In general, ∇f(X∗) 6= 0. Instead,

1

n
1>∇f(X∗) =

1

n

n∑
i=1

∇fi (x∗i) = 0

If we replace ∇f(Xk) by Yk and Yk → 0,

(I−W)X∞ = −ηY∞ = 0,

we can achieve the consensus.

Distributed Learning IJCAI 2021 50 / 92

Gradient Tracking Method

One form of tracking method to tackle DCP

Aug-DGM:

⌊
Xk+1 = WXk − ηYk

Yk+1 = WYk +∇f(Xk+1)−∇f(Xk)

Y is the tracking variable.
Y preserve the gradient average

Y0 = ∇f(X0) ⇒
1

n
1>Yk =

1

n
1>∇f(Xk)

The limit point of Y satisfies

(I−W)Y∞ = 0

Y∞ =
1

n
11>∇f(X∞)

X∞ reaches the consensus ⇔ Y∞ = 0 ⇔ X∞ is solution.

More forms of gradient tracking can be found in Aug-DGM [Xu et al. ’15],
Next [Di Lorenzo-Scutari ’16],DIGing[Qu-Li ’17, Nedic et al. ’17] and
SONATA [Scutari-Sun ’19].

Distributed Learning IJCAI 2021 51 / 92

Gradient Tracking Method

The exact convergence with fixed stepsize

η ∈

0,
(1−max{|λ2(W)|, |λn(W)|})2

(1 +
√

L
µ

+ 3)L

Xk converges to X∗ linearly.

Extension: Push-Pull algorithm over directed network [Pu et al. ’20].

Drawback: one more communication per iteration.

Question:

1. Linear convergent algorithm with better communication rounds?
2. Algorithm with larger stepsize?

Distributed Learning IJCAI 2021 52 / 92

EXTRA/NIDS

EXTRA proposed in [Shi et al. ’15] uses one more historical variable to reach
consensus.

Consider two consecutive iterations of DGD with different mixing matrices Xk+2 = WXk+1 − η∇f(Xk+1)

Xk+1 =
I + W

2
Xk − η∇f(Xk)

Combine two iterations,

Xk+2 − Xk+1 = WXk+1 − I + W

2
Xk − η∇f(Xk+1) + η∇f(Xk)

⇓

EXTRA: Xk+2 =
I + W

2
(2Xk+1 − Xk)− η∇f(Xk+1) + η∇f(Xk)

Distributed Learning IJCAI 2021 53 / 92

EXTRA/NIDS

Consensus,

X∞ =
I + W

2
X∞ − η∇f(X∞) + η∇f(X∞) ⇒ (I−W)X∞ = 0.

Optimality, taking telescopic sum,

��X
1 = WX0 −����η∇f(X0)

X2 −��X
1 = WX1 − I + W

2
X0 −����η∇f(X1) + ����η∇f(X0)

...

Xk+1 −��Xk = WXk − I + W

2
Xk−1 − η∇f(Xk) + �����

η∇f(Xk−1)

⇓

Xk+1 = WXk − η∇f(Xk)︸ ︷︷ ︸
DGD

−
k−1∑
t=0

I−W

2
Xt

︸ ︷︷ ︸
correction

Distributed Learning IJCAI 2021 54 / 92

EXTRA/NIDS

The consensus of X∞ implies the optimality

��X∞ = ���WX∞ − η∇f(X∞)−
∞∑
t=0

I−W

2
Xt .

⇓

η1>∇f(X∞) = η

n∑
i=1

∇fi (x∞i) = −1>
∞∑
t=0

I−W

2
Xt = 0.

The exact linear convergence with fixed stepsize

η ∈
(

0,
1 + λn(W)

L

)
.

Extension: larger stepsize over relaxed mixing matrix [Li-Yan ’21], i.e.,

−5

3
< λn(W) ≤ · · · ≤ λ2(W) < λ1(W) = 1,

the linear convergence is preserved when λn(W) ≤ −1

η ∈
(

0,
5 + 3λn(W)

4L

)
.

Distributed Learning IJCAI 2021 55 / 92

EXTRA/NIDS

NIDS is proposed in [Li et al. ’19].

NIDS: Xk+2 =
I + W

2
[2Xk+1 − Xk−η∇f(Xk+1) + η∇f(Xk)]

EXTRA: Xk+2 =
I + W

2
(2Xk+1 − Xk)−η∇f(Xk+1) + η∇f(Xk)

The only difference is the communication of gradient, but NIDS converges linearly
with

η ∈
(

0,
2

L

)
.

The stepsize is independent on the network.

The stepsize is consistent with that in gradient descent

Extension: NIDS also preserves linear convergence over relaxed mixing matrix with
the same stepsize.

Distributed Learning IJCAI 2021 56 / 92

EXTRA/NIDS

Compared to gradient tracking methods, EXTRA/NIDS converges faster due to the
larger stepsize.

EXTRA/NIDS communicates only once per iteration.

EXTRA/NIDS has proximal variant to solve DCCP (DCP+regularizer).

PG-EXTRA:

Yk+2 = WXk+1 + Yk+1 − I + W

2
Xk−η∇f(Xk+1) + η∇f(Xk)

Xk+2 = proxηr(Yk+2)

NIDS:

Yk+2 = WXk+1 + Yk+1 − I + W

2

[
Xk+η∇f(Xk+1)− η∇f(Xk)

]
Xk+2 = proxηr(Yk+2)

Drawback: it is difficult to adapt and analyze EXTRA/NIDS for directed network.

Distributed Learning IJCAI 2021 57 / 92

A Numerical Example

0 500 1000 1500 2000 2500 3000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

1

10 2

3

4

5

6

7

8

9

Figure: LEFT: the error ‖xk−x∗‖F
‖x0−x∗‖F

vs iterations for DGD with different stepsizes, EXTRA with

three stepsizes, and NIDS. RIGHT: The random network with 10 nodes. Figure from [Li-Yan ’21]

Distributed Learning IJCAI 2021 58 / 92

A Numerical Example

0 500 1000 1500 2000 2500 3000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

1

10

2

3

4

5

6 7

8 9

Figure: LEFT: the error ‖xk−x∗‖F
‖x0−x∗‖F

vs iterations for DGD with different stepsizes, EXTRA with

three stepsizes, and NIDS. RIGHT: The random network with 10 nodes. Figure from [Li-Yan ’21]

Distributed Learning IJCAI 2021 59 / 92

Other Algorithms

Dual Averaging – [Duchi et al. ’11]

Augmented Lagrangian Method – [Gharesifard-Cortés ’13]

Fast Distributed Gradient Method – [Jakovetić et al. ’14]

D-ADMM – [Shi et al. ’14]

DLM – [Ling et al. ’15]

Stochastic Gradient Push – [Nedić-Olshevsky ’16]

SDCS – [Lan et al. ’20]

For more algorithms, refer to survey [Nedić et al. ’18]

Distributed Learning IJCAI 2021 60 / 92

A Unified Decentralized Framework: PUDA

PUDA proposed in [Alghunaim et al. ’20] to solve DCCP (DCP + non-smooth
regularizer)

PUDA:

Zk+1 = (I− C)Xk − η∇f(Xk)− BYk

Yk+1 = Yk + BZk+1

Xk+1 = proxηr(AZk+1)

A,B,C are symmetric matrices dependent on mixing matrix W.

When r = 0, i.e., no regularizer, the framework covers many algorithms.

Aug-DGM: A = W2, B = I−W and C = 0.
DIGing: A = I,B = I−W and C = I−W2.

EXTRA: A = I,B = I−W
2

and C = I−W
2

.

NIDS: A = I+W
2
,B = I−W

2
and C = 0.

PUDA provides (new) proximal variants for these algorithms.

Distributed Learning IJCAI 2021 61 / 92

A Unified Decentralized Framework: PUDA

Assumptions on A,B and C:
(1) BX = 0 ⇔ x1 = x2 = · · · = xn.
(2) C = 0 or CX = 0 ⇔ BX = 0.

(3) A2 ≤ I− B2 and 0 ≤ C < 2I.

Global linear convergence

Theorem (Linear rate with fixed stepsize)

Let η < 2−λ1(C)
L

, it holds that

‖Xk − X∗‖2 + ‖Yk − Y∗‖2 ≤ γ(‖Xk−1 − X∗‖2 + ‖Yk−1 − Y∗‖2),

where
γ = max{1− ηµ(2− λ1(C)− ηL), 1− λmin(B2)} < 1.

Distributed Learning IJCAI 2021 62 / 92

A Numerical Example

Logistic regression with `2 + `1 regularizer.

fi (xi) =
1

L

L∑
l=1

ln(1 + exp(−yi,lw>i,lxi)) +
λ

2
‖xi‖2, ri (xi) = ρ‖xi‖1

Figure: Simulation results for three datasets. Prox-ED is a new proximal variant of NIDS.
Prox-ATC I and II are proximal variants of gradient tracking methods. Figure
from [Alghunaim et al. ’20]

Distributed Learning IJCAI 2021 63 / 92

Table of Contents

1 Introduction

2 Centralized Learning and Communication Compression
Compression Operators
Centralized Learning with Compression

3 Decentralized Optimization
Decentralization
Consensus Problem
Decentralized Algorithms
A Unified Framework for Decentralized Problem

4 Decentralized Learning with Compression
DGD-type Algorithms with Compression
Primal-Dual Algorithms with Compression
Gradient-Tracking Algorithms with Compression

5 Summary and Future Direction

Distributed Learning IJCAI 2021 64 / 92

Decentralized Learning with Compression

Selected algorithms

DGD-type algorithms:
DCD-SGD [Tang et al. ’18]
Choco-SGD [Koloskova et al. ’19]

Primal-dual algorithms:
LEAD [Liu et al. ’21]
LessBit [Kovalev et al. ’21]
Prox-LEAD [Li et al. ’21]

Gradient-tracking algorithms:
C-GT [Liao et al. ’21]

Distributed Learning IJCAI 2021 65 / 92

DCD-PSGD: Difference Compression

P-DSGD [Lian et al. ’17]: no compression

Xk+1 = WXk − η∇F(Xk ; ξk)

DCD-PSGD [Tang et al. ’18]: difference compression

Xk+ 1
2 = WXk − η∇F(Xk ; ξk)[

WXk= WXk−1 + WQ(Xk−1+ 1
2 − Xk−1)

]
Xk+1 = Xk + Q(Xk+ 1

2 − Xk)

Convergence: for non-convex and smooth problems: O(1√
nK

).

Drawbacks: 1) requires compression with high precision; 2) convergence bias.

Distributed Learning IJCAI 2021 66 / 92

DCD-PSGD: Experiment

Distributed Learning IJCAI 2021 67 / 92

Choco-Gossip: Average Preserving

Gossip (no compression)
Decentralized Average (Gossip):

Xk+1 = WXk = Xk − (I−W)Xk

A relaxed form:
Xk+1 = Xk − γ(I−W)Xk

Convergence to consensus: ‖Xk − X∗‖2
F ≤ (1− γδ)2k‖X0 − X∗‖2

F where
δ = 1− |λ2(W)|.

Quantized gossip (with compression)
Choco-gossip [Koloskova et al. ’19]: difference compression

X̂k+1 = X̂k + Q(Xk − X̂k)

Xk+1 = Xk+1 − γ(I−W)X̂k+1[
WX̂k+1= WX̂k + WQ(Xk − X̂k)

]
Average preseving:

1

n

∑
i

Xk+1
i =

1

n

∑
i

Xk
i = X∗

Convergence: EEk ≤
(
1−O(δ2(1− C))

)kEE0 with a special stepsize γ, when Q is a

C -contracted compression operator. Ek = ‖Xk − X∗‖2
F + ‖Xk − X̂t+1‖2

F

Distributed Learning IJCAI 2021 68 / 92

Choco-Gossip: Average Preserving

Gossip (no compression)
Decentralized Average (Gossip):

Xk+1 = WXk = Xk − (I−W)Xk

A relaxed form:
Xk+1 = Xk − γ(I−W)Xk

Convergence to consensus: ‖Xk − X∗‖2
F ≤ (1− γδ)2k‖X0 − X∗‖2

F where
δ = 1− |λ2(W)|.

Quantized gossip (with compression)
Choco-gossip [Koloskova et al. ’19]: difference compression

X̂k+1 = X̂k + Q(Xk − X̂k)

Xk+1 = Xk+1 − γ(I−W)X̂k+1[
WX̂k+1= WX̂k + WQ(Xk − X̂k)

]
Average preseving:

1

n

∑
i

Xk+1
i =

1

n

∑
i

Xk
i = X∗

Convergence: EEk ≤
(
1−O(δ2(1− C))

)kEE0 with a special stepsize γ, when Q is a

C -contracted compression operator. Ek = ‖Xk − X∗‖2
F + ‖Xk − X̂t+1‖2

F

Distributed Learning IJCAI 2021 68 / 92

Choco-Gossip: Experiment

Average consensus on the ring topology

Distributed Learning IJCAI 2021 69 / 92

Choco-SGD

P-DSGD (a slight different form): no compression

Xk+1 = W(Xk − γ∇F(Xk ; ξk))

Choco-SGD [Koloskova et al. ’19]: with compression

Xk+ 1
2 = Xk − ηk∇F(Xk ; ξk)

X̂k+1 = X̂k+1 + Q(Xk+ 1
2 − X̂k)

Xk+1 = Xk+ 1
2 − γ(I−W)X̂k+1[

WX̂k+1= WX̂k + WQ(Xk − X̂k)
]

Convergence: for smooth and µ-strongly convex problems, when K is sufficiently

large: Ef (xK
avg)− f ∗ = O(σ2

µnK
).

Drawbacks: 1) hard to tune γ and ηk ; 2) slow convergence; 3) convergence bias

Distributed Learning IJCAI 2021 70 / 92

Choco-SGD: Experiment

Convergence to the optimality on a ring topology

Distributed Learning IJCAI 2021 71 / 92

Compression for Primal-Dual Algorithms

Communication Compression for decentralized optimization
DCD-SGD, ECE-SGD [Tang et al. ’18]
QDGD [Reisizadeh et al. ’19a]
QuanTimed-DSGD [Reisizadeh et al. ’19b]
DeepSqueeze [Tang et al. ’19]
CHOCO-SGD [Koloskova et al. ’19]
. . .

Reduce to DGD-type algorithms, which suffer from convergence bias

X∗ 6= WX∗ − η∇F(X∗).

The performance degrade on heterogeneous data, and they converge slowly.

Since primal-dual algorithms are effective in handling the convergence bias, can we
design primal-dual algorithms with compression?

Distributed Learning IJCAI 2021 72 / 92

LEAD

LEAD [Liu et al. ’21] is the first primal-dual decentralized algorithm with
compression that attains linear convergence.

Decentralized consensus problem (DCP)

X∗ = arg min
X∈Rn×p

n∑
i=1

fi (xi)︸ ︷︷ ︸
=:F(X)

, s.t. (I−W)X = 0, (3)

Consider the equivalent min-max problem

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈B
1
2 X,S〉, (4)

where B = I−W
2

.

Distributed Learning IJCAI 2021 73 / 92

LEAD

Consider the equivalent min-max problem

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈B
1
2 X,S〉, (5)

We apply primal-dual hybrid gradient method (PDHG) in [Zhu-Chan ’08]:
PDHG :

Xk+1 = arg min
X∈Rn×p

F(X) + 〈B
1
2 X,Sk〉,

Sk+1 = Sk + λB
1
2 Xk+1.

We solve X-subproblem inexactly by two-step gradient descent with stepsize η:
inexact PDHG :

Xk+1 = Xk − η∇F(Xk)− ηB
1
2 Sk ,

Yk+1 = Xk+1 − η∇F(Xk+1)− ηB
1
2 Sk ,

Sk+1 = Sk + λB
1
2 Yk+1.

Distributed Learning IJCAI 2021 74 / 92

LEAD

Consider the equivalent min-max problem

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈B
1
2 X,S〉, (5)

We apply primal-dual hybrid gradient method (PDHG) in [Zhu-Chan ’08]:
PDHG :

Xk+1 = arg min
X∈Rn×p

F(X) + 〈B
1
2 X,Sk〉,

Sk+1 = Sk + λB
1
2 Xk+1.

We solve X-subproblem inexactly by two-step gradient descent with stepsize η:
inexact PDHG :

Xk+1 = Xk − η∇F(Xk)− ηB
1
2 Sk ,

Yk+1 = Xk+1 − η∇F(Xk+1)− ηB
1
2 Sk ,

Sk+1 = Sk + λB
1
2 Yk+1.

Distributed Learning IJCAI 2021 74 / 92

LEAD

To share the computation of ∇F(Xk) between iterations, we switch the order and let

D = B
1
2 S:

inexact PDHG :

Yk+1 = Xk − η∇F(Xk)− ηDk ,

Dk+1 = Dk +
λ

2
(I−W)Yk+1,

Xk+1 = Xk − η∇F(Xk)− ηDk+1.

(6)

There is only one time communication in D step.

We propose a new compression procedure for communication over decentralized
networks.

Distributed Learning IJCAI 2021 75 / 92

LEAD

LEAD: set λ = γ
η

Yk = Xk − η∇F(Xk ; ξk)− ηDk

Ŷk = CompressionProcedure(Yk)

Dk+1 = Dk +
γ

2η
(I−W)Ŷk = Dk +

γ

2η
(Ŷk − Ŷk

w)

Xk+1 = Xk − η∇F(Xk ; ξk)− ηDk+1

Compression procedure

Qk = Compress(Yk −Hk) B Compression

Ŷk= Hk + Qk

Ŷk
w= Hk

w + WQk B Communication

Hk+1 = (1− α)Hk + αŶk

Hk+1
w = (1− α)Hk

w + αŶk
w

Distributed Learning IJCAI 2021 76 / 92

LEAD

How LEAD works?

Gradient Correction

Xk+1 = Xk − η(∇F(Xk ; ξk) + Dk+1)

F(Xk ; ξk) + Dk+1 → 0

Difference Compression
Qk = Compress(Yk −Hk)

Yk → X∗,Hk → X∗ ⇒ Yk −Hk → 0⇒ ‖Qk − (Yk −Hk)‖ → 0

Implicit Error Compensation
Ek = Ŷk − Yk

Dk+1 = Dk +
γ

2η
(Ŷk − Ŷk

w) = Dk +
γ

2η
(I−W)Yk +

γ

2η
(Ek −WEk)

A global average view
Xk+1 = Xk − η∇F(Xk ; ξk)

Xk → Xk

Advantages: 1) faster convergence; 2) support heterogeneous data well; 2) easy to
tune stepsizes η, α and γ (simply setting α = 0.5 and γ = 1 works well).

Distributed Learning IJCAI 2021 77 / 92

LEAD

How LEAD works?

Gradient Correction

Xk+1 = Xk − η(∇F(Xk ; ξk) + Dk+1)

F(Xk ; ξk) + Dk+1 → 0

Difference Compression
Qk = Compress(Yk −Hk)

Yk → X∗,Hk → X∗ ⇒ Yk −Hk → 0⇒ ‖Qk − (Yk −Hk)‖ → 0

Implicit Error Compensation
Ek = Ŷk − Yk

Dk+1 = Dk +
γ

2η
(Ŷk − Ŷk

w) = Dk +
γ

2η
(I−W)Yk +

γ

2η
(Ek −WEk)

A global average view
Xk+1 = Xk − η∇F(Xk ; ξk)

Xk → Xk

Advantages: 1) faster convergence; 2) support heterogeneous data well; 2) easy to
tune stepsizes η, α and γ (simply setting α = 0.5 and γ = 1 works well).

Distributed Learning IJCAI 2021 77 / 92

LEAD: Convergence

κf =
L

µ
, κg =

λmax(I−W)

λ+
min(I−W)

Complexity bounds when σ = 0
LEAD converges to the ε-accurate solution with the iteration complexity

O
((

(1 + C)(κf + κg) + Cκf κg
)

log
1

ε

)
.

When C = 0 (i.e., no compression) or C ≤ κf +κg

κf κg +κf +κg
, the iteration complexity is

O
(

(κf + κg) log
1

ε

)
.

This recovers the convergence rate of NIDS [Li et al. ’19].

With C = 0 (or C ≤ κf +κg

κf κg +κf +κg
) and fully connected communication graph (i.e.,

W = 11>

n
), the iteration complexity is

O(κf log
1

ε
).

This recovers the convergence rate of gradient descent [Nesterov ’13].

Complexity bounds when σ > 0
Sublinear rate

1

n

n∑
i=1

E
∥∥∥xki − x∗

∥∥∥2
. O

(
1

k

)

Distributed Learning IJCAI 2021 78 / 92

LEAD: Convergence

κf =
L

µ
, κg =

λmax(I−W)

λ+
min(I−W)

Complexity bounds when σ = 0
LEAD converges to the ε-accurate solution with the iteration complexity

O
((

(1 + C)(κf + κg) + Cκf κg
)

log
1

ε

)
.

When C = 0 (i.e., no compression) or C ≤ κf +κg

κf κg +κf +κg
, the iteration complexity is

O
(

(κf + κg) log
1

ε

)
.

This recovers the convergence rate of NIDS [Li et al. ’19].

With C = 0 (or C ≤ κf +κg

κf κg +κf +κg
) and fully connected communication graph (i.e.,

W = 11>

n
), the iteration complexity is

O(κf log
1

ε
).

This recovers the convergence rate of gradient descent [Nesterov ’13].

Complexity bounds when σ > 0
Sublinear rate

1

n

n∑
i=1

E
∥∥∥xki − x∗

∥∥∥2
. O

(
1

k

)

Distributed Learning IJCAI 2021 78 / 92

LEAD: Convergence

κf =
L

µ
, κg =

λmax(I−W)

λ+
min(I−W)

Complexity bounds when σ = 0
LEAD converges to the ε-accurate solution with the iteration complexity

O
((

(1 + C)(κf + κg) + Cκf κg
)

log
1

ε

)
.

When C = 0 (i.e., no compression) or C ≤ κf +κg

κf κg +κf +κg
, the iteration complexity is

O
(

(κf + κg) log
1

ε

)
.

This recovers the convergence rate of NIDS [Li et al. ’19].

With C = 0 (or C ≤ κf +κg

κf κg +κf +κg
) and fully connected communication graph (i.e.,

W = 11>

n
), the iteration complexity is

O(κf log
1

ε
).

This recovers the convergence rate of gradient descent [Nesterov ’13].

Complexity bounds when σ > 0
Sublinear rate

1

n

n∑
i=1

E
∥∥∥xki − x∗

∥∥∥2
. O

(
1

k

)

Distributed Learning IJCAI 2021 78 / 92

LEAD: Convergence

κf =
L

µ
, κg =

λmax(I−W)

λ+
min(I−W)

Complexity bounds when σ = 0
LEAD converges to the ε-accurate solution with the iteration complexity

O
((

(1 + C)(κf + κg) + Cκf κg
)

log
1

ε

)
.

When C = 0 (i.e., no compression) or C ≤ κf +κg

κf κg +κf +κg
, the iteration complexity is

O
(

(κf + κg) log
1

ε

)
.

This recovers the convergence rate of NIDS [Li et al. ’19].

With C = 0 (or C ≤ κf +κg

κf κg +κf +κg
) and fully connected communication graph (i.e.,

W = 11>

n
), the iteration complexity is

O(κf log
1

ε
).

This recovers the convergence rate of gradient descent [Nesterov ’13].

Complexity bounds when σ > 0
Sublinear rate

1

n

n∑
i=1

E
∥∥∥xki − x∗

∥∥∥2
. O

(
1

k

)
Distributed Learning IJCAI 2021 78 / 92

LEAD: Experiment

0 25 50 75 100 125 150 175
Epoch

10
6

10
4

10
2

10
0

10
2

||X
k

X
* |

|2 F

DGD (32 bits)
NIDS (32 bits)
QDGD (2 bits)
DeepSqueeze (2 bits)
CHOCO-SGD (2 bits)
LEAD (2 bits)

0 1000000 2000000 3000000 4000000 5000000
Bits transmitted

10
6

10
4

10
2

10
0

10
2

||X
k

X
* |

|2 F

DGD (32 bits)
NIDS (32 bits)
QDGD (2 bits)
DeepSqueeze (2 bits)
CHOCO-SGD (2 bits)
LEAD (2 bits)

0 25 50 75 100 125 150 175
Epoch

10
7

10
5

10
3

10
1

10
1

C
on

se
ns

us
 E

rr
or

DGD (32 bits)
NIDS (32 bits)
QDGD (2 bits)
DeepSqueeze (2 bits)
CHOCO-SGD (2 bits)
LEAD (2 bits)

0 25 50 75 100 125 150 175
Epoch

10
10

10
8

10
6

10
4

10
2

10
0

10
2

C
om

pr
es

si
on

 E
rr

or
QDGD (2 bits)
DeepSqueeze (2 bits)
CHOCO-SGD (2 bits)
LEAD (2 bits)

Linear regression (full-gradient)

Distributed Learning IJCAI 2021 79 / 92

LEAD: Experiment

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Bits transmitted 1e14

0.5

1.0

1.5

2.0

Lo
ss

Homogeneous data
DGD (32 bits)
NIDS (32 bits)
QDGD (2 bits)
DeepSqueeze (2 bits)
CHOCO-SGD (2 bits)
LEAD (2 bits)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Bits transmitted 1e14

1.0

1.5

2.0

2.5

Lo
ss

Heterogeneous data
DGD (32 bits)
NIDS (32 bits)
QDGD* (2 bits)
DeepSqueeze* (2 bits)
CHOCO-SGD* (2 bits)
LEAD (2 bits)

Stochastic optimization on deep learning
(AlexNet trained on CIFAR10; ∗ means divergence)

Distributed Learning IJCAI 2021 80 / 92

LessBit

Consider the equivalent min-max problem

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈(I−W)
1
2 X,S〉, (7)

Apply one step primal descent and one step dual ascent:⌊
Xk+1 = Xk − η∇F(Xk)− ηDk ,

Dk+1 = Dk + θ(I−W)Xk+1,

where Dk = (I−W)
1
2 Sk . It is a special case of PDGM [Alghunaim-Sayed ’20].

LessBit [Kovalev et al. ’21] proposes a similar compression procedure as in
LEAD [Liu et al. ’21] and apply the compression on Xk+1:

Xk+1 = Xk − η∇F(Xk)− ηDk ,

X̂k+1 = CompressionProcedure(Xk+1)

Dk+1 = Dk + θ(I−W)X̂k+1

It considers several gradient estimators: Dual gradient/GD/SGD/Loopless SVRG.

Convergence complexity (full-gradient): O((C + κf κg + Cκf κ̃g) log 1
ε
)

Distributed Learning IJCAI 2021 81 / 92

LessBit

Consider the equivalent min-max problem

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈(I−W)
1
2 X,S〉, (7)

Apply one step primal descent and one step dual ascent:⌊
Xk+1 = Xk − η∇F(Xk)− ηDk ,

Dk+1 = Dk + θ(I−W)Xk+1,

where Dk = (I−W)
1
2 Sk . It is a special case of PDGM [Alghunaim-Sayed ’20].

LessBit [Kovalev et al. ’21] proposes a similar compression procedure as in
LEAD [Liu et al. ’21] and apply the compression on Xk+1:

Xk+1 = Xk − η∇F(Xk)− ηDk ,

X̂k+1 = CompressionProcedure(Xk+1)

Dk+1 = Dk + θ(I−W)X̂k+1

It considers several gradient estimators: Dual gradient/GD/SGD/Loopless SVRG.

Convergence complexity (full-gradient): O((C + κf κg + Cκf κ̃g) log 1
ε
)

Distributed Learning IJCAI 2021 81 / 92

Prox-LEAD

Prox-LEAD proposed in [Li et al. ’21] considers the decentralized consensus
composite problem with regularizer:

X∗ = arg min
X∈Rn×p

n∑
i=1

fi (xi)︸ ︷︷ ︸
=:F(X)

+
n∑

i=1

r(xi)︸ ︷︷ ︸
=:R(X)

, s.t. (I−W)
1
2 X = 0, (8)

The equivalent min-max problem:

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈(I−W)
1
2 X,S〉+ R(X). (9)

We adapt the inexact PDHG with an additional proximal gradient step:

Yk+1 = Xk − η∇F(Xk)− ηDk ,

Dk+1 = Dk +
λ

2
(I−W)Yk+1,

Vk+1 = Xk − η∇F(Xk)− ηDk+1 =
(

I− ηλ

2
(I−W)

)
Yk+1,

Xk+1 = proxηR(Vk+1).

(10)

where

proxηR(X) = arg min
Y∈Rn×p

R(Y) +
1

2η
‖Y − X‖2.

Distributed Learning IJCAI 2021 82 / 92

Prox-LEAD

Prox-LEAD proposed in [Li et al. ’21] considers the decentralized consensus
composite problem with regularizer:

X∗ = arg min
X∈Rn×p

n∑
i=1

fi (xi)︸ ︷︷ ︸
=:F(X)

+
n∑

i=1

r(xi)︸ ︷︷ ︸
=:R(X)

, s.t. (I−W)
1
2 X = 0, (8)

The equivalent min-max problem:

min
X∈Rn×p

max
S∈Rn×p

F(X) + 〈(I−W)
1
2 X,S〉+ R(X). (9)

We adapt the inexact PDHG with an additional proximal gradient step:

Yk+1 = Xk − η∇F(Xk)− ηDk ,

Dk+1 = Dk +
λ

2
(I−W)Yk+1,

Vk+1 = Xk − η∇F(Xk)− ηDk+1 =
(

I− ηλ

2
(I−W)

)
Yk+1,

Xk+1 = proxηR(Vk+1).

(10)

where

proxηR(X) = arg min
Y∈Rn×p

R(Y) +
1

2η
‖Y − X‖2.

Distributed Learning IJCAI 2021 82 / 92

Prox-LEAD

We apply the compression procedure on Yk+1:

Yk+1 = Xk − η∇F(Xk)− ηDk ,

Ŷk+1 = CompressionProcedure(Yk+1),

Dk+1 = Dk +
λ

2
(I−W)Ŷk+1,

Vk+1 =
(

I− ηλ

2
(I−W)

)
Ŷk+1,

Xk+1 = proxηR(Vk+1).

(11)

Distributed Learning IJCAI 2021 83 / 92

Prox-LEAD

Complexity with full-gradient:

O
((

(1 + C)(κf + κg) +
√
C(1 + C)κf κg

)
log

1

ε

)
.

Convergence complexity comparison
(Õ hides the factor log 1

ε
)

Distributed Learning IJCAI 2021 84 / 92

Prox-LEAD

Complexity with stochastic-gradient:
The general stochastic setting:

fi (xi) = Eξi∼Di
fi (xi , ξi).

The finite-sum setting:

fi (xi) =
1

m

m∑
j=1

fij (xi).

Stochastic gradient oracle (SGO)

Distributed Learning IJCAI 2021 85 / 92

Prox-LEAD

Summary of the convergence complexities for Prox-LEAD
(Õ hides the factor log 1

ε
)

Distributed Learning IJCAI 2021 86 / 92

Prox-LEAD: Experiment

0 500 1000 1500 2000 2500 3000 3500 4000
epoch

10−2

10−1

tra
in

in
g

su
bo

pt
im

al
ity

DGD (32bit)
NIDS (32bit)
Choco (2bit)
LessBit (2bit)
LEAD (32bit)
LEAD (2bit)

0 2 4 6 8
bits 1e7

10−2

10−1

tra
in

in
g

su
bo

pt
im

al
ity

`2 regularizer with full gradient

0 500 1000 1500 2000 2500 3000 3500 4000
epoch

10−2

10−1

tra
in

in
g

su
bo

pt
im

al
ity

P2D2 (32bit)
NIDS (32bit)
Prox-LEAD (32bit)
Prox-LEAD (2bit)

0 2 4 6 8
bits 1e7

10−2

10−1

tra
in

in
g

su
bo

pt
im

al
ity

`2 + `1 regularizer with full gradient

Distributed Learning IJCAI 2021 87 / 92

Prox-LEAD: Experiment

0.0 0.2 0.4 0.6 0.8 1.0
#gradient 1e8

10−4

10−3

10−2

10−1

tra
in

in
g

su
bo

pt
im

al
ity DGD (32bit)

Choco (2bit)
LessBit-SGD (2bit)
LessBit-LSVRG (2bit)
LEAD-SGD (32bit)
LEAD-SGD (2bit)
LEAD-SAGA (32bit)
LEAD-SAGA (2bit)
LEAD-LSVRG (32bit)
LEAD LSVRG (2bit)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
bits 1e8

10−4

10−3

10−2

10−1

tra
in

in
g

su
bo

pt
im

al
ity

`2 regularizer with stochastic gradient

0 1 2 3 4 5 6 7
#gradient 1e7

10−4

10−3

10−2

10−1

100

tra
in

in
g

su
bo

pt
im

al
ity

Prox-LEAD-SGD (32bit)
Prox-LEAD-SGD (2bit)
Prox-LEAD-SAGA (32bit)
Prox-LEAD-SAGA (2bit)
Prox-LEAD-LSVRG (32bit)
Prox-LEAD-LSVRG (2bit)

0 1 2 3 4 5
bits 1e8

10−4

10−3

10−2

10−1

tra
in

in
g

su
bo

pt
im

al
ity

`2 + `1 regularizer with stochastic gradient

Distributed Learning IJCAI 2021 88 / 92

Gradient Tracking with Compression

Gradient tracking (Aug-DGM) [Xu et al. ’15]:

Xk+1 = WXk − ηYk

Yk+1 = WYk +∇F(Xk+1)−∇F(Xk)

A relaxed form:

Xk+1 = Xk − γ(I−W)Xk − ηYk

Yk+1 = Yk − γ(I−W)Yk +∇F(Xk+1)−∇F(Xk)

A compressed gradient tracking algorithm (C-GT) [Liao et al. ’21]:

X̂k = CompressionProcedure(Xk)

Ŷk = CompressionProcedure(Yk)

Xk+1 = Xk − γ(I−W)X̂k − ηYk

Yk+1 = Yk − γ(I−W)Ŷk +∇F(Xk+1)−∇F(Xk)

Drawbacks: 1) linear convergence rate is worse than LEAD; 2) it requires double
communication cost

Advantage: it is easier to extend to more general network assumption, such as
directed networks (Compressed Push-Pull (CPP) [Song et al. ’21]) and dynamic
networks.

Distributed Learning IJCAI 2021 89 / 92

Gradient Tracking with Compression

Gradient tracking (Aug-DGM) [Xu et al. ’15]:

Xk+1 = WXk − ηYk

Yk+1 = WYk +∇F(Xk+1)−∇F(Xk)

A relaxed form:

Xk+1 = Xk − γ(I−W)Xk − ηYk

Yk+1 = Yk − γ(I−W)Yk +∇F(Xk+1)−∇F(Xk)

A compressed gradient tracking algorithm (C-GT) [Liao et al. ’21]:

X̂k = CompressionProcedure(Xk)

Ŷk = CompressionProcedure(Yk)

Xk+1 = Xk − γ(I−W)X̂k − ηYk

Yk+1 = Yk − γ(I−W)Ŷk +∇F(Xk+1)−∇F(Xk)

Drawbacks: 1) linear convergence rate is worse than LEAD; 2) it requires double
communication cost

Advantage: it is easier to extend to more general network assumption, such as
directed networks (Compressed Push-Pull (CPP) [Song et al. ’21]) and dynamic
networks.

Distributed Learning IJCAI 2021 89 / 92

Table of Contents

1 Introduction

2 Centralized Learning and Communication Compression
Compression Operators
Centralized Learning with Compression

3 Decentralized Optimization
Decentralization
Consensus Problem
Decentralized Algorithms
A Unified Framework for Decentralized Problem

4 Decentralized Learning with Compression
DGD-type Algorithms with Compression
Primal-Dual Algorithms with Compression
Gradient-Tracking Algorithms with Compression

5 Summary and Future Direction

Distributed Learning IJCAI 2021 90 / 92

Conclusion

Summary
Covered by this talk:

Communication bottleneck in distributed machine learning
Compression operators for communication compression
Improved techniques: difference compression & error compensation
Centralized algorithms with compression
Decentralized algorithms
Decentralized algorithms with compression

Not covered:
Asynchronized algorithms
Periodic update in local SGD
Device sampling in federated learning

Future Direction
Theoretical analysis under weaker assumptions
Acceleration
Asynchronization
Device sampling
Periodic communication
Directed and dynamic networks
Compressed counterparts

Distributed Learning IJCAI 2021 91 / 92

Acknowledgement

Tutorial website: https://lxiaorui.github.io/distopt/

Thanks for the funding supports from National Science Founding (NSF),
Army Research Office (ARO) and Facebook Faculty Research Award.

Distributed Learning IJCAI 2021 92 / 92

https://lxiaorui.github.io/distopt/

Sulaiman A Alghunaim and Ali H Sayed.
Linear convergence of primal–dual gradient methods and their performance in
distributed optimization.
Automatica, 117:109003, 2020.

Sulaiman A Alghunaim, Ernest K Ryu, Kun Yuan, and Ali H Sayed.
Decentralized proximal gradient algorithms with linear convergence rates.
IEEE Transactions on Automatic Control, 66(6):2787–2794, 2020.

Paolo Di Lorenzo and Gesualdo Scutari.
Next: In-network nonconvex optimization.
IEEE Transactions on Signal and Information Processing over Networks, 2(2):
120–136, 2016.

John C Duchi, Alekh Agarwal, and Martin J Wainwright.
Dual averaging for distributed optimization: Convergence analysis and network
scaling.
IEEE Transactions on Automatic control, 57(3):592–606, 2011.

Bahman Gharesifard and Jorge Cortés.
Distributed continuous-time convex optimization on weight-balanced digraphs.
IEEE Transactions on Automatic Control, 59(3):781–786, 2013.

Dušan Jakovetić, Joao Xavier, and José MF Moura.
Fast distributed gradient methods.
IEEE Transactions on Automatic Control, 59(5):1131–1146, 2014.

Distributed Learning IJCAI 2021 92 / 92

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Urban Stich, and Martin
Jaggi.
Error feedback fixes SignSGD and other gradient compression schemes.
In Proceedings of the 36th International Conference on Machine Learning, pages
3252–3261. PMLR, 2019.

Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi.
Decentralized stochastic optimization and gossip algorithms with compressed
communication.
In Proceedings of the 36th International Conference on Machine Learning, pages
3479–3487. PMLR, 2019.

Dmitry Kovalev, Anastasia Koloskova, Martin Jaggi, Peter Richtarik, and Sebastian
Stich.
A linearly convergent algorithm for decentralized optimization: Sending less bits for
free!
In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 4087–4095. PMLR, 13–15 Apr
2021.
URL http://proceedings.mlr.press/v130/kovalev21a.html.

Guanghui Lan, Soomin Lee, and Yi Zhou.
Communication-efficient algorithms for decentralized and stochastic optimization.
Mathematical Programming, 180(1):237–284, 2020.

Distributed Learning IJCAI 2021 92 / 92

http://proceedings.mlr.press/v130/kovalev21a.html

Yao Li and Ming Yan.
On the linear convergence of two decentralized algorithms.
Journal of Optimization Theory and Applications, 189(1):271–290, 2021.

Yao Li, Xiaorui Liu, Jiliang Tang, Ming Yan, and Kun Yuan.
Decentralized composite optimization with compression, 2021.

Zhi Li, Wei Shi, and Ming Yan.
A decentralized proximal-gradient method with network independent step-sizes and
separated convergence rates.
IEEE Transactions on Signal Processing, 67(17):4494–4506, 2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
Can decentralized algorithms outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent.
In Advances in Neural Information Processing Systems, pages 5330–5340, 2017.

Yiwei Liao, Zhuorui Li, Kun Huang, and Shi Pu.
Compressed gradient tracking methods for decentralized optimization with linear
convergence, 2021.

Qing Ling, Wei Shi, Gang Wu, and Alejandro Ribeiro.
Dlm: Decentralized linearized alternating direction method of multipliers.
IEEE Transactions on Signal Processing, 63(15):4051–4064, 2015.

Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan.

Distributed Learning IJCAI 2021 92 / 92

A double residual compression algorithm for efficient distributed learning.
The 23rd International Conference on Artificial Intelligence and Statistics, 2020.

Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, and Ming Yan.
Linear convergent decentralized optimization with compression.
In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=84gjULz1t5.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik.
Distributed learning with compressed gradient differences.
arXiv preprint arXiv:1901.09269, 2019.

Angelia Nedić and Alex Olshevsky.
Stochastic gradient-push for strongly convex functions on time-varying directed
graphs.
IEEE Transactions on Automatic Control, 61(12):3936–3947, 2016.

Angelia Nedic and Asuman Ozdaglar.
Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Angelia Nedic, Alex Olshevsky, and Wei Shi.
Achieving geometric convergence for distributed optimization over time-varying
graphs.
SIAM Journal on Optimization, 27(4):2597–2633, 2017.

Distributed Learning IJCAI 2021 92 / 92

https://openreview.net/forum?id=84gjULz1t5

Angelia Nedić, Alex Olshevsky, and Michael G Rabbat.
Network topology and communication-computation tradeoffs in decentralized
optimization.
Proceedings of the IEEE, 106(5):953–976, 2018.

Yurii Nesterov.
Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedić.
Push–pull gradient methods for distributed optimization in networks.
IEEE Transactions on Automatic Control, 66(1):1–16, 2020.

Guannan Qu and Na Li.
Harnessing smoothness to accelerate distributed optimization.
IEEE Transactions on Control of Network Systems, 5(3):1245–1260, 2017.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, and Ramtin Pedarsani.
An exact quantized decentralized gradient descent algorithm.
IEEE Transactions on Signal Processing, 67(19):4934–4947, 2019a.

Amirhossein Reisizadeh, Hossein Taheri, Aryan Mokhtari, Hamed Hassani, and
Ramtin Pedarsani.
Robust and communication-efficient collaborative learning.
In Advances in Neural Information Processing Systems, pages 8388–8399, 2019b.

Distributed Learning IJCAI 2021 92 / 92

Gesualdo Scutari and Ying Sun.
Distributed nonconvex constrained optimization over time-varying digraphs.
Mathematical Programming, 176(1):497–544, 2019.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu.
1-bit stochastic gradient descent and application to data-parallel distributed training
of speech DNNs.
In Interspeech 2014, September 2014.

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin.
On the linear convergence of the admm in decentralized consensus optimization.
IEEE Transactions on Signal Processing, 62(7):1750–1761, 2014.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin.
Extra: An exact first-order algorithm for decentralized consensus optimization.
SIAM Journal on Optimization, 25(2):944–966, 2015.

Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan.
Compressed gradient tracking for decentralized optimization over general directed
networks, 2021.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi.
Sparsified SGD with memory.
In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pages 4452–4463, 2018.

Distributed Learning IJCAI 2021 92 / 92

Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu.
Communication compression for decentralized training.
In Advances in Neural Information Processing Systems, pages 7652–7662. 2018.

Hanlin Tang, Xiangru Lian, Shuang Qiu, Lei Yuan, Ce Zhang, Tong Zhang, and
Ji Liu.
Deepsqueeze: Decentralization meets error-compensated compression.
CoRR, abs/1907.07346, 2019.
URL http://arxiv.org/abs/1907.07346.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang.
Error compensated quantized SGD and its applications to large-scale distributed
optimization.
In Proceedings of the 35th International Conference on Machine Learning, pages
5325–5333, 2018.

Lin Xiao and Stephen Boyd.
Fast linear iterations for distributed averaging.
Systems & Control Letters, 53(1):65–78, 2004.

Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie.
Augmented distributed gradient methods for multi-agent optimization under
uncoordinated constant stepsizes.
In 2015 54th IEEE Conference on Decision and Control (CDC), pages 2055–2060.
IEEE, 2015.

Distributed Learning IJCAI 2021 92 / 92

http://arxiv.org/abs/1907.07346

Kun Yuan, Qing Ling, and Wotao Yin.
On the convergence of decentralized gradient descent.
SIAM Journal on Optimization, 26(3):1835–1854, 2016.

Mingqiang Zhu and Tony Chan.
An efficient primal-dual hybrid gradient algorithm for total variation image
restoration.
UCLA CAM Report, 34:8–34, 2008.

Distributed Learning IJCAI 2021 92 / 92

	Introduction
	Centralized Learning and Communication Compression
	Compression Operators
	Centralized Learning with Compression

	Decentralized Optimization
	Decentralization
	Consensus Problem
	Decentralized Algorithms
	A Unified Framework for Decentralized Problem

	Decentralized Learning with Compression
	DGD-type Algorithms with Compression
	Primal-Dual Algorithms with Compression
	Gradient-Tracking Algorithms with Compression

	Summary and Future Direction

